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Abstract
Approximate Theories of Elastic Rods With Applications
by |
Jeffrey Stephen Turcotte
Doctor of Philosophy in Mechanical Engineering
University of California, Berkeley

Assistant Professor Oliver M. O’Reilly, Chair

In this dissertation, approximate theories involving combinations of small and
moderate strains and rotations for elastic rods are developed. Their usefulness is
illustrated with several applications. The rod theory used to construct these theories
is the directed (or Cosserat) rod theory developed by Green, Naghdi and several of
their co-workers. The approximate theories which are developed in this dissertation
are rendered properly invariant under arbitrary superposed rigid body motions by
extending some recent work of Casey and Naghdi, and of O’Reilly. These extensions
were developed to render the properly invariant theories more amenable to applica-
tions.

The approximate theory that is the primary focus of this work is one involving
small strain and moderate rotation. A parallel development for a directed surface
was performed earlier by Naghdi and Vongsarnpigoon. Specifically, it is shown that
there are considerable simplifications in the balance and constitutive laws as well as
in the strain-displacement relations because of the assumptions made in this theory.

Among the applications considered is a discussion of certain flexural modes of



vibration which have escaped attention in the literature and which are also present
in a Timoshenko beam. Of additional interest is the small strain-moderate rotation
theory, and three specific examples of its use are presented. These applications show
the nature of the nonlinearity introduced by moderate rotation as we]i as some restric-
tions of the theory which are dependent on the specific application. This dissertation
concludes with a discussion‘ of the whirling rod. Specifically, this problem is formu-
lated as one of infinitesimal deformations superposed on a large, steady deformation.
Among the issues addressed is the influence of the steady deformation on the small

amplitude vibrational response of the rod.

W_ ol oty

Assistant Professor Oliver I\[O’Rei]ly, Chairman Date
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Chapter 1

Introduction

1.1 General Background

A rod theory is a theory in which the field equations have been reduced to dependence
on a single spatial coordinate (e.g., the arc length). Primarily, there have been
two approaches to the development of rod theories in the literature. One approach
starts with three-dimensional continuum mechanics and is based on an approximation
procedure. Examples of various procedures may be found in Love [41, §251 - §254]
and in Green, Naghdi and Wenner [25]. The second approach is referred to as the
direct approach, where the balance laws are postulated a priori, and the concept of a
directed curve is used. According to Ericksen and Truesdell [15], directed media were
first considered by Duhem [13] and later studied by E. and F. Cosserat [8]. The theory
of a directed or Cosserat curve has been extended by A. E. Green, P. M. Naghdi and
others. A review of this development is provided by Naghdi [46]. The theory used in
this dissertation has two directors attached to a space curve, although theories with

an arbitrary number of directors are developed in [20] and [25].




1.2 Scope and Content of this Dissertation

In this dissertation, we are primarily concerned with developing approximate theories
of Cosserat curves, but we also provide results for a number of applications. Approx-
imate rod theories that are based on three-dimensional continuum mechanics have
been addressed by a number of authors such as Shield and Im [57] and Danielson
and Hodges [10]. These theories typically allow for large or moderate rotations but
require the strain to remain small, thereby encompassing more deformations than the
linear theory at the expense of adding some complexity or nonlinearity. The approx-
imate theories of a Cosserat curve we develop in this dissertation, however, are quite
distinct from other theories. We give special attention to the approximate theory of
small strain accompanied by moderate rotation, as the infinitesimal theory has been
previously detailed in [18], [20], [22] and [26], and theories involving moderate strain
lack sufficient development of their constitutive responses to be useful at this time.

In Chapter 2, we recall all of the field equations of the purely mechanical two-
director model of a constrained Cosserat curve. We also discuss the correspon-
dence between the direct approach and three-dimensional continuum mechanics. In
addition, we discuss invariance requirements and the properly invariant theory of
O’Reilly [50] for approximate theories of an elastic rod. In the process, we modify
an assumption in [50] that is overly restrictive on the invariance requirements for the
constraint forces.

Chapter 3 details four approximate theories of Cosserat curves after deriving the

differential equation for the rotation tensor of the Cosserat curve in terms of the strain




measures. The four theories result from all combinations of small and moderate
strain and rotation. In this chapter, which is motivated by the work of Naghdi
and Vongsarnpigoon [49], the differential equatioﬁ for the rotation tensor is used to
form the approximation for the cases having small strain. This metixod proves to be
unsatisfactory in the approximations involving moderate strain, and leads us to use
an alternate approach which we discuss in Chapter 4.

Following the work of Casey and Naghdi [5] in three-dimensional continuum me-
chanics, we use the symmetric and skew symmetric parts of a displacement gradient to
represent strain and rotation in Chapter 4. This provides a straight-forward method
of developing the same four approximate theories we identified in Chapter 3. We
then show that this method yields the same results as the method of Chapter 3 to
the order of approximation. We also use the method to show that these approximate
theories are not properly invariant unless we use the auxiliary motion of O’Reilly [50],
which we summarize in Chapter 2.

In Chapter 5, we develop a constrained theory to further simplify the bd@ce
laws. We then proceed to specialize to the case of straight rods. This allows for
significant simplification of the balance and constitutive laws. For future reference,
the field equations of the infinitesimal theory are also recorded in this chapter.

Chapter 6 deals with linear extensional and flexural vibrations. Since the linear
flexural balance laws of a Cosserat curve with two directors are equivalent to the
Timoshenko beam theory, much of the development given for free flexural vibrations

is available in the literature. However, we do determine and discuss certain modes that



have not been previously explored, and the example given serves as a preparation for
another example in Chapter 7. The free extensional response that we obtain solutions
for is unique in its inclusion of non-axisymmetric lateral extensions. In fact, we use a
rectangular cross-section in our example and can see clear phase relationships between
the longitudinal and lateral extensions.

We provide examples of the moderate rotation theory in Chapter 7. Two of these
examples highlight the coupling between flexural and extensional response, which is
one of the primary differences between an infinitesimal theory and a moderate rotation
theory. We provide both a static example and a free vibration example and complete
the chapter with an example showing the sensitivity of the theory to deformations.
This last example shows that the theory is not valid for all deformations of a specific
rod.

In Chapter 8 we develop the balance laws for a rod, one end of which rotates at a
constant angular velocity, and consider the free vibrations superposed on the steady
deformation. After a brief review of the literature on this subject, we formulate the
appropriate boundary and initial value problem for this system. We then establish the
balance laws for the associated steady, large motion. Finally, we obtain the balance
laws for the superposed vibrations. The resulting equations are rendered properly
invariant using modified auxiliary motions. We do not solve for the vibration modes
of the rod because the explicit form of the free energy is not assumed. However, we
discuss an approximate solution procedure that could be used if this function were

available.



1.3 Notation

In this dissertation we use several standard notational conventions, some of which
are summarized here. All lower case Latin indices range from 1 to 3, lower case
Greek indices range from 1 to 2, upper case Latin indices range from 1 to R, and the
summation convention for repeated indices is employed. The tensor product a® b of
any two vectors a and b is a second order tensor defined by the operation (a®b)c =
(c - b)a for every vector c. The Euclidean norm of a second order tensor, denoted
|| - ||, is defined by || A ||>=¢tr(AAT) = A - A, where “tr” is the trace operation, and .
“” indicates the inner product of two tensors. If € = ¢(t) = sup; || x ||, where “sup”
stands for the supremum (or least upper bound) of a non-empty bounded set of real
numbers, then, following Casey and Naghdi [6], we use the notation h(x) = O(€")
as € — 0 for a function h(x) which is defined in the neighborhood of x = 0 if there
exists a constant C > 0 such that || h(x) ||< Ce". For further details on notation and

inequalities, we refer the reader to [6, §2.1] and Naghdi and Vongsarnpigoon [48, §4].




Chapter 2

Theory of a Cosserat or Directed Curve

In this chapter we summarize the theory of a Cosserat curve developed by A. E.
Green, P. M. Naghdi and their co-workers. This theory was developed in several

papers; however the main results can be found in [17], [19], [20], [26] and [46].

2.1 Kinematics

We recall, from Naghdi [46], the concept of a Cosserat curve. This curve consists of a
material curve, which is embedded in Euclidean three-space £2, and to which at each
material point of the curve a set of deformable vector fields or directors is defined.
For purposes of the present discussion, it suffices to consider the case where there are
just two directors d; and d;. We employ a convected coordinate { to identify the
points of the material curve.

The motion of the Cosserat curve is defined by the vector-valued functions
r=r({,t), do=d.({ 1), (2.1)

where o = 1 and 2, r(¢,t) uniquely identifies the present configuration £ of the

material curve, and (2.1) uniquely identifies the present configuration of the Cosserat




curve. It is assumed that the scalar triple product
[dl,dz, d3] > 0, (22)

where a standard notational convention is adopted:

Or

d3=8_§'

(2.3)

We recall that the assumption (2.2) implies that a set of reciprocal vectors {d‘} can
be uniquely defined:

d'-d; = ¢, (2-4)
where 6; is the Kronecker delta. The material time derivatives of the quantities r and
d, are

v=1(£1), Wo=d(£ 1), (2.5)
where the superposed dot denotes the partial derivatives of these functions with re-
spect to t (keeping ¢ fixed).

For convenience, a fixed reference configuration of the Cosserat curve is also de-

fined by the vector-valued functions

R =R({), Ds=Da(¢) (2.6)
It is assumed that
[D1,D,,Ds] > 0, (2.7)
where, paralleling (2.3),
D3 = %?. (2.8)
7




Again, (2.7) implies that a set of reciprocal vectors {D'} can be defined:
D'-D; =6 (2.9)

We now recall the kinematic tensors of the Cosserat curve which were introduced

by Naghdi [46, §13]:

'F=d,®D*+d;®D? (2.10)
C=F'F, E=;(C-), (2.11)
L . _0Ds _
G, = 2 D’ G.= ot ® D”, (2.12)
K, = FTG, — ¢Gq. (2.13)

In (2.10) and (2.12), ® is the standard tensor product of two vectors. In addition, we

recall the definition of the displacement vector of the material curve £:

u(€)t) = I'(.f,t) - R(ﬁ) (2'14)

With the assistance of (2.3) and (2.8) it follows that

du
i d; — Ds. (2.15)

By substituting (2.10) into (2.11) - (2.13), we also obtain

E=(di-d;~D; D,)D'®D’ = E;D' @ ", (2.16)
_(9da  Da o\ 3_ . i 3
Ka - ( aé * d: 3{ Dl) D ® D - nal3D ® D . (2'17)

INaghdi [46] does not explicitly introduce the tensor E in direct notation and the symbols v;;/2
for the components of this tensor are usually used in the literature. The notation E was introduced
by O’Reilly [50].



2.2 Balance Laws

Prior to discussing the balance laws of a Cosserat curve, the following five fields are
introduced: n, the contact force; k, the intrinsic director forces; and m*®, the director
forces. We also define A = A(€) = po(£)v/ D33 as the mass per unit length of the rod
in the reference configuration, where D33 = D3 - Ds.

From Naghdi [46, §9] and Green and Naghdi [20], the balance laws for a Cosserat

curve are, mass conservation:

A=0, y*=0, §*¥=0, (2.18)
balance of linear momentum:

on . .

% + M = A(V+y W), (2.19)

(two) balances of director momentum:

om*

a¢

+ A1 — k% = A (y°V + y*Pwg) (2.20)

and the balance of moment of momentum:

d3xn+daxk"+a;; X m® = 0. (2.21)

In (2.18) - (2.21), f = f(¢,t) is the assigned force, I* = 1%({,t) are the assigned
director forces, and y® = y*(£) and y*? = yP* = y*B(£) are inertia coefficients.

To obtain one component form of the balance laws, following Green, Naghdi and
Wenner [26], the various vectors are resolved onto {d;}: e.g., n = n'd;, k* = k*d;

and m® = m*®d;. For convenience, we define the differences between the assigned

9




forces and acceleration terms as
f=f—(V+y®Wwa) = fid;, (2.22)

q® =1 — (4 +y*w) = ¢*'d.. | (2.23)

The resulting component forms of (2.19) - (2.21) are

on’
— 4+ AT+ Af =0, 2.24
o + AT+ Af = (2.24)

Im* ar ; .
+ A im® — k4 Ag™ =0, (2.25)
3

3 —n? 4 mA D} —m*A 2 =0, (2.26)
M — kP meEA ) — m*A =0, (2.27)

where A, = d*-dd, /d¢.

2.3 Constitutive Equations and Constraints

In this section we outline the conmstitutive and constraint responses of a Cosserat
curve. This theory is given in Naghdi [46, §10] and was further developed by Naghdi
and Rubin [47] and O’Reilly [50]. We begin by postulating the existence of a free
energy v of the Cosserat curve and R mechanical constraints " having the following

functional dependences:?

- ad, 3 ~
17[) - '¢ ( iy aé. é. 36) = lb (FaGaa OGCMDI'?f)’ (228)

ad, oD,
L_ L s £ —
Q" =@ (d I D;, o ,{) (F, Gq, 0Ga, Di, &) = 0. (2.29)

2See [47] for examples of such constraints.

10




As 9 is a constitutive response for the Cosserat curve, it is assumed to be objective:
¥+ =¥ (QF,QG,, 0Ga, D, ) =% (F, Ga, 0Gay Dis¢) (2.30)

where Q = Q(t) is a proper orthogonal tensor representing the rot#tion due to the
superposed rigid body motion, and the transformation of F and G, under superposed
rigid body motions is explained fully by O’Reilly [50, §2]. O’Reilly [50] and others have
also shown that the objectivity of 1) can be used to reduce the functional dependence
of ¥ to: |

¥ = (Eij, Kajs 0Gar Dis £) (2.31)

where E;; and Koi = Kais are the respective components of E and K, as defined in
(2.16) and (2.17).

Recalling the expression for mechanical power (cf. Naghdi [45, §10]):

ov o o« OWq
n-—+k% wo +m%-

9 9

= M), (2.32)

and, if we assume that the kinetical responses may be separated into their constitutive

responses and constraint responses, respectively, as
n=n+a k*=k*+k% m®=nm*+m°, (2.33)

then the constitutive responses, obtained using a procedure similar to that discussed

by Naghdi and Rubin [47], are given by

. [ 9 3y ad,
n—)‘<3E3kdk+3naa ag)’ (2.34)
AL 3y ddg
k* = A (8Eakd’°+ Broy OF ), (2.35)
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vy Y
m- = Aaﬂak d. (2.36)

Following [50] and [24], we assume that each of the constraint functions ol is objective.

Using standard arguments, they must also have the representation
(PL = @L (Eijanm', OGaaDi’é.) = O’ (237)

and the constraint responses are

_ dpt Ot dd, L
= d, + —2) = 2.38
nEp (aE3k * T Bkas OF PLm (2.38)

Lo _ 3()0L a(pL adﬁ _ oL
k® =pp (mdk + Brup OF = prB*", (2.39)
o L
m® = pLaSO kdk = pr¢™?, (2.40)

where pr, = pr(€,t) are Lagrange multipliers and we have used the summation con-
vention for the index L (L =1,...,R).
The component forms of the constitutive equations for isothermal rods are given

in Green and Naghdi [20, §13] and in Green, Laws and Naghdi [19, §8] as

oY
23 ~a3y) 3 — .
e — A, )\——6E33, (2.41)
A O
sa 23y a_ 2 2.
n% — M\ 2 0B’ (2.42)
TAB | TuX _ sady po_ sop)y A at/)
KM+ k MmN E —mA =2 , (2.43)
OE),
m = A % (2.44)

Bnm-’

where the function 1 must be written in a form which allows for the appropriate
symmetries of E,g.%> Clearly, the component form of the constraint responses can be

presented in a similar manner.

3We show later an acceptable form for .
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2.4 Correspondence with Three-Dimensional

Continuum Mechanics

In this section, we show how the Cosserat curve may be used to model a three-
dimensional continuum B. Let {6'} be a set of convected coordinates for B. These
coordinates uniquely define the material points of B. The position vector p = p(6,1)

of a material point of B is assumed to be approximated by
p=r+6°d,, (2.45)

where 63 = £. A similar situation holds for the reference configuration (but there the
corresponding approximation is exact; i.e., it is a representation).

To help the reader gain insight into the theory and to provide formulae which
are useful in applications, we recall here all of the basic kinetical integrations from
the three-dimensional theory. For this purpose, we assume as in Green, Naghdi and
Wenner [25] that the region occupied by the body at time t is a neighborhood of £
bounded by a material surface F(6*,6?,¢) = 0. Then £ = constant defines a material
plane A which is bounded by F' = 0. Following [25, §2], the curve { is fixed relative

to the surface F' = 0 by the conditions
/ /A /T 6% d9d6% = \y®, (2.46)

where ¢* is the determinant of the metric tensor g; = gi-g; for the three-dimensional
convected coordinate basis {g;} = {0p/d6'}, p” is the mass density of the body, and

y* = y*(£). Since p*\/g* is independent of time due to the conservation of mass,

13




the curve £ is a material curve. Using these definitions, the kinetical vectors of the
Cosserat curve theory can be calculated. The resulting expressions are again taken

from [25]. The contact force is given by
n= / /A T 491 d6?, (2.47)
the intrinsic director forces are given by
k* = f /A T d6'd6?, (2.48)
and the director forces are given by
m® = / /A T3> 46" d6?, (2.49)

where T¢ = /g* 7g; are the stress vectors associated with the contravariant com-

ponents 79 of the Cauchy stress tensor T. The assigned forces are, again according

to [25, §2],
A =/ « /g £* 61 d6? f U T3Y gg? — (T2 — A2T%) d6'],  (2.50
[ VF e dgas £ (- W) a6 - (12 - X T) ], (250)
a __ * * £x 1 2 o 1 173 2 2 2m3 1
Al —//Ap\/_a—f(‘) dg'de +f§0 [(T! - A'T°) db — (T2 - 2*T%) d8?], (2.51)
where f* is the three-dimensional body force, and the line integrals are taken along
the curve defined by the intersection of the surfaces ¢ = constant and F' = 0. Also,

X\ = g, + g3 is a vector which is tangent to the surface F' = 0. Finally, the inertia

coefficients are specified (according to Green and Naghdi {20, §10]) by (2.46) and

Ay*P = / /A p*\/g" 6°6° d6'de”. (2.52)
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2.5 Invariant Theory

O’Reilly [50] has shown that the infinitesimal theory of an elastic Cosserat curve is not
properly invariant under arbitrary superposed rigid body motions. The approximate
theories to be considered in this work, which include, but are not limited to, the
infinitesimal theory, suffer from the same drawback (we will show this to be the case
in section 4.5). Following the work of Casey and Naghdi [5], which was in the context
of three-dimensional continuum mechanics, O’Reilly [50] defines an auxiliary motion
of a Cosserat curve which is properly invariant and yet able to incorporate large
motions. Since we will use this theory, as well as a slightly modified form of it, we
provide an outline of the theory here and refer the reader to [50] for additional details.
We also discuss a modification to the theory given in [50] in which the invariance of
the Lagrange multipliers in a constrained theory is not imposed. These invariance

requirements are discussed in detail by O’Reilly and Turcotte [52].

2.5.1 Invariance Requirements

We begin with a discussion of the invariance requirements. For an unconstrained rod
under superposed rigid body motions, following the assumptions of Naghdi [45, §8]
for the case of a Cosserat surface and Green and Laws [17] for the case of a Cosserat
curve, O'Reilly [50] assumes the kinetical fields transform under superposed rigid

body motions according to

nt =Qn, k*'=Qk* m*"=Qm”" (2.53)
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Thus, these fields are termed objective. However, in the case of a constrained rod, as
shown by O’Reilly and Turcotte [52],* it is not appropriate to require the full kinetical
fields n, k® m® to be objective. The parts of these fields determined by constitutive

equations are seen to be objective by first recognizing that
df =Qd,, (2.54)

which implies that the measures E and K, are invariant. Since we have assumed that
the free energy ® is also invariant, the partial derivatives 9y /9E;; and 0y [OKaqi are
completely invariant.’ Using this result and (2.54) in the constitutive equations (2.34)

- (2.36) shows that the constitutive equations are objective:
q
At =Qa, k**=Qk*, m**=Qm°, (2.55)

but the Lagrange multipliers which determine the constraint response need not be
objective (remain constant under superposed rigid motions), depending upon how the
superposed motion is brought about.

For example, if the superposed rigid body motions are caused by the addition
of (obviously non-objective) surface tractions which, by careful construction, do not
affect the constitutive responses, the Lagrange multipliers will generally not be ob-
jective. To show this clearly, consider the balance laws for two motions that differ by
a superposed rigid body motion:

on  Oi e
a—€+a—€+)\f—)\(v+y Wa), (2.56)

4This point was first made by Casey and Carroll [4] in the context of three-dimensional continuum
mechanics.

5For completeness, we should also note that the measures A} are unaltered under superposed
rigid body motions.
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(2.57)

(2.58)

dmet  om°*t

at _ Lot _ ot — al+ aB i +
5t e T koK M (yev* +ywg). (2.59)

Application of the invariance requirements (2.55) and substituting for 9n/9¢ from

(2.56) into (2.58) and for O*/9¢ — k* from (2.57) into (2.59) leads to

A S
5 +M* = Qg +.)\(v +ywE - Q(V +y"Wa — 1)), (2.60)
om>t om®

+ Alet — kot = Q af _ Ql_(a + A (ya",+ + yaﬁwg_

o¢
Q (y*v +y*Pws —1%)),  (261)
which are given in O’Reilly and Turcotte [52, eq. (3.2)]. The kinematical quantities

associated with the two motions are related by (2.54) and
rt =Qr+q, (2.62)

where q represents a translation depending on time alone.

As explained in O’Reilly and Turcotte [52], the fields f+ and 1°* cannot, in gen-
eral, be uniquely determined from (2.54), (2.62), (2.60) and (2.61), if no invariance
requirements are imposed on the constraint responses i, m® and k*. In other words,
it is possible in a constrained theory to have two motions of the same Cosserat curve
which differ by a superposed rigid body motion, but whose constraint responses, as-
signed forces and assigned director forces are not completely related. Furthermore, the
boundary conditions on the respective n and m* for the two motions are not necessar-
ily related either. In this dissertation, we impose the invariance requirements (2.55),

rather than (2.53), which is normally used.
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2.5.2 Properly Invariant Balance Laws for Approximate
Theories

In this subsection, we give a short account of the properly invariant theory of O’Reilly
[50] as we intend to apply it in this dissertation. First, recall, from the assump-
tions (2.2) and (2.7), that the tensor F is invertible and may be uniquely decomposed

using the polar decomposition theorem:
F = RU, (2.63)

where U is a symmetric positive definite tensor and R is a proper orthogonal ten-
sor. The properly invariant theory for the approximate theories of a Cosserat curve
require knowledge of the position r(£,t) and rotation tensor R = R(,t) of the rod
at some material point of the material curve { which is known as the pivot. The
auxiliary motion (denoted by an asterisk) is constructed by removing the translation

and rotation at the pivot from the total motion of the rod,
r*(€,t*) = RT[r(¢, 1) — v(&,t)] + R(E), (£, t") = RTda(6,1), t* =t 4+, (2.64)

where R(£)® refers to the position of the pivot in the reference configuration and c*
is a real-valued constant. By construction, a rod with small strain but large motion
may have a small (and possibly infinitesimal) auxiliary motion.

The properly invariant vectors n*, ko* and **, are related to their full motion

counterparts by the relations

A%(¢,t%) = RTA(L, 1), k*(€,1%) = RTk*(¢,t), m**(¢,t*) = RTm(£,1).  (2.65)

6We distinguish the referential position of the Cosserat curve, R(£) (a vector), from the rotation
tensor by always showing its explicit dependence on £ alone.
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The assigned forces f and director forces 1%, as noted previously, need not follow this
law of transformation, as we do not insist that the Lagrange multipliers are invariant
under superposed rigid body motions. On the othér hand, it is completely reasonable,
on physical grounds, to expect that the direction of the constraint fc;rces will behave

objectively. Thus, recalling (2.38) - (2.40), we assume that”

f=pnt =p Ry, k" =p B0 =pRA™, m* = prl*h = pRCY,
(2.66)
where I = 1,2,3,...,R). The inertia terms associated with the motion must be
accounted for in the theory, hence the balance laws for the auxiliary motion depend
on the pivot motion. However, it is important to note that the Lagrange multipliers
of the auxiliary motion p} are not equal to py, as in [50].
We will use the auxiliary motion to ensure that the constitutive laws are properly
invariant. We do so by premultiplying the balance laws for the motion by RRT and

by using (2.65) and (2.66):

_ (oa 9 (pn™ L
R(Br; + (pgg ))z/\(v+yaw,,—f), (2.67)

(om0 (prg™)
R( 5T ot

Asin O’Reilly [50], the constitutive relations used in (2.67) and (2.68) are properly

— pLBoL - l‘ca*> =2 (yov +ywp — 1), (268)

invariant under superposed rigid body motions. This invariance holds even if approx-
imate constitutive relations are used. We note here that O’Reilly’s developments are

based on the work of Casey and Naghdi (5] and [6].

7This is equivalent to the invariance requirement ok = kt,
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2.5.3 Modified Auxiliary Motion

Since the auxiliary motion of O’Reilly requires knowledge of the pivot rotation tensor
R(E,t) and displacement F(£,t), it is often difficult to accommodate it in applica-
tions, including those discussed in this dissertation. In the case of motions with an
unknown pivot rotation tensor R(£,t) (which arises particularly in flexural defor-
mations where R(£,t) is not specified by the boundary conditions), it is helpful to
introduce a rotation tensor S(t) as a known rotation such that STS =1, det(S) = 1
and ST = QS. When such a rotation tensor can be found, a modified auxiliary mo-
tion can be constructed by the same approach as in [50]. The difference between this
modified auxiliary motion and the usual auxiliary motion, constructed from a known
pivot rotation, is a rigid body rotation; and, therefore, all of the conclusions made by
O’Reilly regarding the auxiliary motion are equally valid for this modified auxiliary
motion. The modified auxiliary motion {f', &a} is defined in a similar manner to

(2.64):®

5(¢6,0) = ST() (r(6,6) ~ r(E,0) +5(),  da(6,D) =ST(ale1),  (269)

where s(t) is a specified function of time, { = ¢t + & and & is a constant. Balances
of linear and director momentum that use the modified auxiliary motion can be

constructed in a manner paralleling the development of (2.67) and (2.68).

8In a personal communication, Professor Casey informed Professor O’Reilly that a related con-
struction was used in an unpublished draft of Casey and Naghdi [5]. The construction is also related
to several others in the literature, for example, Kane and Levinson [35] and Simo and Vu-Quoc [58].
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Chapter 3

Kinematics of Approximate Rod

Theories

In addition to the full nonlinear rod theory, approximate rod theories can be de-
rived depending on the magnitudes of the strain and rotation in the body. Casey
and Naghdi [6] have developed related approximate theories for the case of three di-
mensional elasticity. In the case of rods, the development is complicated by, among
others, the additional variable K,. Four approximate rod theories are developed
in the following sections. These are infinitesimal strain with infinitesimal rotation,
infinitesimal strain with moderate rotation, moderate strain with infinitesimal rota-
tion and moderate strain with moderate rotation. Before detailing these theories, we
wish to make further kinematical developments of a general nature beginning with an
equation for the rotation tensor R. The corresponding equation in three-dimensional
continuum mechanics was first derived by Shield [56], and its counterpart for Cosserat
surfaces was derived by Naghdi and Vongsarnpigoon [49].

Again recalling the polar decomposition theorem F = RU, where U is a symmetric
positive definite tensor and R is a proper orthogonal tensor, we use this decomposition

to derive a differential equation for the rotation tensor R in terms of U and the other
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kinematic variables defined in section 2.1. We accomplish this by first observing that,

in view of (2.63), the orthogonality of R and the symmetry of U,

r9F _yrrBy vV \ (3.1)

F 5 ¢ ot

Substitution of (2.10) into the left-hand-side of (3.1) yields'

RT%% = %U‘l [(Ka + KT — 2E oGa - 20GIE) (D; ® D*) —
(D* ® Ds) (Ka + KT — 2E ¢Ga — 20GLE) +

au ou o9C aC

—U-U-+ =7 (D;@D%) - (D°®Ds) —-—] Ul (32)

9 9 9 o€
This equation relates the Cosserat curve strain-like deformations to the corresponding

rotations. Using results developed by Hoger and Carlson [31], the tensors U and U-!

can be expressed in terms of the tensor C = 2E + I and principal invariants of U:

Iy=trU, IIy=|[{trU) - trU%|, Illy=detU. (3.3)

DN | =t

Reference [31] also provides formulae for relating these invariants to those of the tensor
C. We refrain from writing the lengthy expressions here and refer the reader to their
paper for the results. In addition, the tensor 9U/3¢ can be expressed in terms of U

( E ) and 9E/J¢ using another result of Hoger and Carlson [32, eq. (2.3)]:2

oU 1 OE ) oE
9r _ | Otk § 2 ¢ 298 95112
98~ Uully — IIIp) Iy {I” a0 (U ot 0 T V%V ) +
0E OE OE
_ 27~ T2 3 el _
(IyIly — I11y) (U T agU ) + (IU+IIIU)Ua£U
OE OF OE
Iy (Uéf + -a?U> + [BB11Iy + (IyIly — I11y) 11y 53} . (3.4)

1The result (3.2) can be verified by direct substitution of the definitions in section 2.1).

2Guo [34] concurrently derived related results in alternate forms.
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Given E(£,t) and Kq(¢,t), (3.2) can be used to solve for R(¢,t) or, as we intend
to show, as a means of relating the size of certain parameters of the rotation tensor
to these other measures. These size relationshipé are the basis of categorizing and
establishing the approximate theories we will develop. |

Naghdi and Vongsarnpigoon [49] (cf. also Vongsarnpigoon [63]) have shown that
the solutions R of an equation that is the equivalent of (3.2) for a Cosserat surface
may differ at most by a rigid body rotation. The proof of the corresponding result for |
the case of Cosserat curves parallels their proof closely, and we do not provide it here.

We record here for future use the well known representation of R on its eigenbasis:

R =13 @ ptg+cost (s, ® py + py ® py) +5inb (g, ® py — 1y @ 15), (3.5)

where g3 =p3(€,t) is the unit vector in the direction of the eigenvector of R that has
a unit eigenvalue, p,(£,t) are two unit vectors in the plane perpendicular to p3 such
that, for each ¢, (i, 15, #5) form a right-handed orthonormal basis for £, and 6 is

the angle of rotation. From (3.5), it follows that

This result can be established by a long, but standard, calculation which employs the

RTaR =2 '% +4 (1 —cos¥). (3.6)

Haﬂs

orthonormality of p;.
Detailed analysis of the approximate theories requires the expression of the kine-
matic relations in component form. In preparation for this, we now introduce the

additional kinematic variables

6,’ =d; — D,', (3.7)




and their components as

0i; = 6;-Dj. (3.8)

We now proceed to express the kinematic tensors E and K, in terms of the vari-
ables (3.8). First, without loss in generality, we assume that the set {D;} is orthonor-
mal: D' = D; and D; - D; = §;. Then, substituting from (3.7) into (2.16) and

using (3.8), the tensor components E;; are
(5,']' + Sj,' + S;kgjk) . (3.9)

Similarly, the non-trivial components of K, are

_ e BBajy o (1 D) o Di) g 5 9D,
Kas = af + aé 5‘]+6g] (D] 36 )+5GJ (Dl ° 65 )+6a]51k (Dk aé ) ¢ (3'10)

Note that, for initially straight rods, for which D; are constant, E;; are unchanged

but K4 simplify to
3bai  Obaj -

—0;;. 3.11
% T o 8ij (3.11)

To make the concepts of moderate and infinitesimal theories precise, we define three

Kai =

measures of smallness:

oft) = sup || E(G,?) I, e(t) = maxsup | Ko(£,2) |l e2(t) = sup

3.1 Infinitesimal Theory

In the infinitesimal theory, having assumed that E is of O(ep), as eo — 0 we retain
only terms of this order throughout the theory. We now introduce the concept of an

infinitesimal rotation using a notion presented by Naghdi and Vongsarnpigoon [49]
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(cf. also Vongsarnpigoon [63]). The rotation tensor R is said to be infinitesimal in

comparison to the measure E if, for any unit vector v,
(R-1)Vv = O(eo) as g — 0. (3.13)

Since RV — ¥ takes its maximum value when ¥ is perpendicular to p3, we let v = p;

n (3.5), which yields
(R—TI)p; = (cos6 — 1) p; +sinf p,. (3.14)

After considering the series expansions of the sine and cosine functions, it is clear

that, for small 8, (R — I)¥ has the same order as 6:
6 = O(eo) as €g — 0. (3.15)
The approximate formulae for U when E = O(eo) as € — 0 are
Ux~I+E=1+0(g), U'=I-E=I-0(«),

Iy =3+ 0(e), IIy=3+0(&), Illy= +0(ep) as €g — 0. (3.16)
The approximations (3.16); ; are well known in continuum mechanics (cf., e.g., [5] or
[50]), and the remaining approximations follow easily. The additional approximation

ou OJOE

_8—5— = —56_ + O(eo) (3.17)

is obtained from (3.4) by using (3.16)134,5. The result (3.17) agrees with the approx-
imation of Naghdi and Vongsarnpigoon [48, eq. (4.12)}, which was obtained using a

Taylor expansion.
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Employing the approximations (3.16) and (3.17) in (3.2) yields

RT&RZE K. + KT) (D; ® D%) + (D ® Ds) (Ko + KT ) +
o€ 2
E

(D ® Ds) (Ko + K7) — (Ko + K1) (Ds ® D*) E| + ‘Z—? (Ds ® D*)+
(D* ® D) [E 0Ga + oGLE + % (Ko +K7) E] (D* ® D) -38—? -

[E 0Ga + oGTE + %E (Ka+ Kf)] (D3 ® D) + O(€2) as € — 0. (3.18)

Taking the norm of both sides of (3.18) and using (3.12) reveals that

70
e [

We now assume that €; < Cieo and €, < Ca€g, where Cy and C; are constants. This

S 460 + 261 + 262. (319)

leads us to conclude that
R — = O(¢) as g — 0. (3.20)

Using this result and (3.6), it is clear that

a6

¢ = O(eo) as g — 0. (3.21)
Next, using standard inequalities for integrals, one can estimate the magnitude of §

as

L =0(e)L = O(eo) as g — 0,  (3.22)

‘9(€,t)~0(€,t)|_<_/;\§% d¢:‘%§

where & and £ are points along ¢ and L is some integration length along £ which is
at most the full length of the material curve. By employing the invariant theory of

O’Reilly [50], the angle 6(£,t) is made to vanish. Thus, we may conclude that

8(£,t) = O(e) as eg — 0, (3.23)
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where we have used (3.15). Although we do not use (3.23) in the infinitesimal theory,
its counterpart in the moderate rotation theory is pivotal.

The director displaéements §; are now approximated by
6; = (F-I)D; = (R-I)D; + O(e) as & — 0, (3.24)

where we have used (2.63) and, subsequently, (3.16);. By setting ¥ = D; in (3.13)

and using (3.24), we see that
6;-D; = 6ij = O(eo) as g — 0. (3.25)

Clearly, from our assumptions following (3.19), €2 < Cseo as g — 0, where C3 is a

constant. It follows from (3.12) and (3.10) that

Application of these results to the relations (3.9) and (3.10) yields

(3.27)

These relations are recognized to be the usual strain-displacement relations of the
infinitesimal Cosserat curve theory (cf. Green, Naghdi and Wenner [26]).

Note that setting O(eo) = O(e;), in this case, is equivalent to assuming that the
orders of the kinematic variables §;; do not change upon taking their partial derivatives
with respect to £. This assumption is normally made in the infinitesimal theory

without a clear justification, but in a nonlinear theory it requires closer scrutiny.
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3.2 Moderate Rotation Theory

We are concerned here with a kinematical development in which E is infinitesimal
while R is moderate. In this theory we neglect terms of O(eg/ 2) as ¢ — 0. The
rotation tensor R is said to be moderate in comparison to E (recall that E is O(eo)

as €g — 0) if, for any unit vector v,
1
(R—I)v =0(¢) as e — 0. (3.28)
Following the same reasoning as in the previous section, we conclude that
L .
6 = O(el) as g — 0. (3.29)

Again parallelling the approach of the previous subsection, we combine (3.20) and

(3.22) with (3.29) to get the result
O(e&) = O(e1)L = O(ey). (3.30)

We now address the size of the displacement components &;; and their partial
derivatives with respect to ¢ for this theory. Recalling (3.24) and using (3.28), we
find that

8;=O(el), B, =0(el)as e — 0. (3.31)

But this is valid only for 7 # j, since (3.9) and (3.12); can be used to show that
S;j = O(ep) as ¢g — 0 for z = j. Next, as K, = kD' ® D® = O(e1) as ¢ — 0, (3.10)

gives us that

L= 0(g) = O(e(%,) as €g — 0. (3.32)
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But we assume that e; < Cyeo as €g — 0, where Cj is a constant, so that (3.12)3 and
(3.9) reveal that 85;;/0¢ = O(eo) as €o — 0 when ¢ = j. Furthermore, as 06,3/ 0¢
is moderate but 0F,3/9¢ is small, taking the dérivative of (3.9) with respect to
shows that 9d3;/9¢ must be moderate. The same argument can bé made to show
that 883,/0¢ is moderate.

In summary, using the present definition of moderate rotation and certain assump-

tions regarding the size of various tensors, we have determined that

i = O(&o) as g — 0, (no sum on %) (3.33)
§i;= O(ed) as e — 0. (i # ) (3.34)

88 :

¥ = O(€) as ¢ — 0, (no sum on 2) (3.35)
85,-j i . .
% O(el) aseo — 0. (1 #J) (3.36)

These results allow for an easy simplification of the strain-displacement relations (3.9)
and (3.10).
We record here the individual components of strain and curvature for the initially

straight rod taking into account the aforementioned orders of magnitude:

- 1/,=- = = 3
By =60+ 3 (512512 + 513513) + O0(€¢), (3.37)
_ 1,/,- = - = 3
Egp =632+ 3 (521521 + 523523) + O0(€d), (3.38)
~ 1 ,- - o = 3
E33 = b33 + 2 (531531 + 532532) + O(€¢), (3.39)
1 /. - _ 3
Eiyy=FEy = 2 (512 + 691 + 513523) + O(€¢), (3.40)
1 /- - - - 3
Ei3=FE;3 = 2 (513 + 631 + 512532) + O(¢}), (3.41)
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Ep =By = % (820 + 8oz + BurB) + O(e3), (3.42)
K11 = 6521 + 65225 12+ ag?&ls + O(ed), (3.43)
Koz = 3;22 ag;‘ 8 + 6;23623 +0(ed), | (3.44)
K1z = ?-iﬁ + 3;23523 +0(ed), (3.45)
ka1 = % + 38623513 +0(ed), (3.46)
K1z = %—3 + %%2632 +0(e3), (3.47)
Koz = ﬂz” + 3(;521 Bar + O(ed), (3.48)

as € — 0. It is important to note that the length of £ poses restrictions on the

applicability of this theory through the measures €, and e,.

3.3 Moderate Strain With Small Rotation

Here we concern ourselves with a kinematical development in which E is moderate
while R is at most infinitesimal (i.e., we let 8 be of O(e}) as ¢ — 0). In this
theory, we neglect terms of O(e3) as e¢ — 0. Under these assumptions, the logic we
used for the first two cases breaks down: we cannot use the rotation tensor equation
(3.2) to estimate the order of the displacement components. Instead we revert to
a geometrical approach, recognizing that the shearing motions are associated with
changes in the angles between the directors whereas the rotation is associated with
the mean rotation of the directors. To keep the rotation small while allowing the
strain to be moderate we cannot merely say that some of the components 5,-,- are

moderate while others are small. In fact, the remarks made above regarding the
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director motions reveals the shortcomings of the general approach we have taken. As
it turns out, those shortcomings are not critical for the case of moderate rotation
with small strain, but an improved approach is néeded for the case considered in this
section. We detail such an approach in the next chapter and do not attempt to obtain

any strain-displacement relations for this case in the current section.

3.4 Moderate Strain and Rotation

Again, we cannot use the approach we employed in section 3.2, but it should be.
apparent that all of the components &;; will be moderate. In this case, however, we
need to retain terms up to O(e2) as €o — 0. This results in retaining the full nonlinear

strain-displacement relations (3.9) and (3.10).
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Chapter 4

Another Approach to Approximate

Theories

In this approach, which parallels the work of Casey and Naghdi [6], no estimate of

the order of the angle of rotation 6(,t) or, consequently, the individual components
& is made. Rather, estimates of the orders of their sums and differences are made.
This results in a slightly more complicated expression for the strain-displacement
relations in the moderate rotation theory. However, as will be seen from the following
developments, the approach is straight-forward. We will also show that, for the case
of small strain accompanied by moderate rotation, it can be made to agree with
the previous results to the order of approximation. The resulting relations, while
appearing significantly different, are expected to yield similar results for all but a

small class of deformations.

We begin by introducing the relative deformation measures

H=F-1=60@D' =e+w, (4.1)

where
e=%(H+HT)=eT=—;-(5;,+SJ,)(Dj®D‘), (4.2)
w= 1 (H-HT) = —wT = (- 5;) (D o D') (43)




The tensors e and w, as in the case of three-dimensional elasticity, are associated with

the strain and rotation respectively; but this definition is different from Naghdi and
Vongsarnpigoon [49] at least in form. In the apprbach of this chapter, we detail four
approximate theories according to the relative orders of these variablés. For example,
the infinitesimal theory corresponds to the case where both e, w and their parital
derivatives with respect to ¢ are small; infinitesimal strain with moderate rotation
corresponds to small e but moderate w and dw/3¢; etc. We begin by defining

|

ot |’

(4.4)

de
2 o=

es(t) = sup lell, elt)= sup | wil, es(t)= sup ;

We should point out here that we are assigning smallness measures to tensor quantities
that are not properly invariant. This departs from the approach of the previous
chapter, but we correct the situation by the use of the auxiliary motion, which we
discuss further near the end of this chapter. In terms of the variables e and w, the

primary kinematic tensors are given by

1o 2
E=e+—2—(e +ew—we—w), (4.5)
D,
K,=FTG, - 0G0=(2e—we+e2+ew—w2) 835 D3+

(ae ow Jde Ow Je Ow

T %‘W%‘W%*é@*a—s)""@”’ (46)

4.1 Infinitesimal Theory

As stated previously, in this approach the infinitesimal theory is developed by assum-

ing that all deformation measures are infinitesimal. The appropriate mathematical
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statement of this assumption is
€ S C5€5 S 0664 S C7€3 as €3 — 0. (4.7)

in (4.7), Cs, Cs and C7 are constants. With this assumption, the kinematic measures

are given by

" E=e+0(e) as 3 — 0, (4.8)
(0D ) (e W\ e o
Ka—2e<a£ ®D>+(5§+36)DQ®D + O(e3) as e3 — 0. (4.9)

These are again the strain-displacement relations of the infinitesimal Cosserat curve
theory (cf. [26] and section 3.1). The components of K, given in the previous chapter
can be recovered by substituting for e and w and using the identity Dy - oD7 /8¢ =

—Di.8D,/d¢.

4.2 Infinitesimal Strain With Moderate Rotation

We now assume that
Gg S Cg(-fs _<_ Cg(:'4 _<_ Cloég as €3 — O, (410)

where Cs, Cy and Cjo are constants. Then the application of (4.4) to (4.5) and (4.6)

yields
1 3
E=e—5w2+0(e§)as es — 0, (4.11)
oD de Ow ow 2
_ 2 a 3, (0 ow OV 3
K, = (2e - w?) 5 ©D +(ag+ T waﬁ)D(,@D + O(e2) as e3 — 0.

(4.12)
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The components of deformation E;; = D; - ED; and kai = D; - (K,Dj3) for an

initially straight Cosserat curve using this definition of moderate rotation are

11 | = 1/, < —— = = z =z 3

E;; = E [&‘j + 5,'.' - Z (5ki6jk + 6ik5kj - 6ki5kj - 6ik6jk)] + 0(532 ), (4,13)
_ _ 86, 1 350,]‘ aSja - - 3

Kai3 = Kai = 7{ 1 (3_5 - 6—5-) (6,',- - 6,-j) + O(¢€}), (4.14)

as €3 — 0, where we have used (3.9) and (3.10) in addition to (4.11) and (4.12).

Individually, these components are

- 1 /.- - \2 1 /2 N 3
Ej =611+ 3 (531 - 513) + 3 (521 - 512) + O(€3), (4.15)
Eap = ;2 + < (552 — 62)" + = (81 — B13)” + O(ed 16
22 = 22+8(32— 23) +§(21— 12) + O(e€3), (4.16)
~ 1 /- - \2 1 /- = \2 3
E33 = 633 + 3 (532 - 523) + 3 (531 - 513) + O(e2), (4.17)
1= - 1 /- - - - \] 3
Ey,=FEy; = 5 812 + 621 — 1 (531 - 513) (523 - 532) + O(€3), (4.18)
1= = 1 /- - - ~\] 3
Ei3=FE3 = 2 _513 + 631 — 1 (521 - 512) (532 - 523)_ + O(€}), (4.19)
1= - 1 /- - - = \] 3
Eypy=E3 = 3 823 + 632 — 1 (521 — 512) (513 - 531) + O(¢3), (4.20)
OB 1[0 OBu)
"iu—gg— 1(35—"*3?) ( 12—521)+
1 6513 3531 = = 2
Z ( a{ - T) (613 - 631) + 0(63 ), (421)
6522 1 3521 3512 = =
522=—a? Z<_8_§—_——5—> ( 21—-512)+
1 (383 b3\ (¢ = 3
Z ( 6€ - —56——) (523 - 532) + 0(63 ), (422)
3512 1 8513 8531 - = 3
K12 = _a—f_ 4 1 (W - 'g) (523 - 532) + O(e3), (4.23)
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65:21 1 6523 6532 - = 3

e T (W - _3_5_) (513 - 531) + O(e3), (4.24)
6513 1 6512 8321 = - 3

M3 =g T3 (Tﬁ_ - _3—5_) (532 - 523) + O(€2), (4.25)
3523 1 8521 6512 = - ‘ 3

F= e Ty (76- - 3{) (531 - 513) + O(€3), (4.26)

as €3 — 0.

We will now show that, to the order of approximation considered, this theory is
equivalent to that of section 3.2. We begin by recalling (from (3.31)) that the vectors
§; and their components §;; are moderate. Because the E;; are infinitesimal, we can.

make the substitution
SJ’; = ZE,']' - S;j = 0(63) — S;j as €3 — 0 (4.27)

into (4.15) - (4.26) rendering them identical to those of the previous section. For
example, (4.17) agrees with (3.39) after letting €3 < Cr1€0, where Ci; is a constant,

and substituting
523 = 2E23 — 332 = — 532 + 0(60), 513 = 2E31 _ 531 = — 531 + 0(60) as €g — 0 (428)

into (4.17) and neglecting terms of 0(63/2) as €9 — 0.

4.3 Moderate Strain With Infinitesimal Rotation

Here we assume that

[ S Cnﬁé S C]gﬁi S 01463 as €3 — 0, (429)
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where C;,, Ci3 and Cy4 are constants. With these assumptions, the kinematic tensors

are given by

E=e+-;-e2+0(e§)aseg-—>0, (4.30)
oD Je Oe Ow
_ 2 a 3 3 3
K, = (2e+e) o ®D +(e6§+8§+ ag)D"‘@D +0(€}) as e3 — 0. (4.31)

Since the constitutive coefficients for this theory are not available, we do not write

the component forms of the strain-displacement relations.

4.4 Moderate Strain With Moderate Rotation

In this theory, we assume the same size comparisons as in the infinitesimal theory,
but we retain terms of O(e2). With this assumption, all terms of the full nonlinear
strain-displacement relations (4.5) and (4.6) must be retained (the components of the

relevant tensors are given by (3.9) and (3.10)).

4.5 Lack of Invariance of Approximate Theories

As we have stated previously, O'Reilly [50] has shown that the infinitesimal theory
is not properly invariant under superposed rigid body motions. We have stated that
this is also true for the approximate theories. We will show, as an example, that the

moderate rotation theory is not properly invariant. Thus we have that

Et =e — % (w+)2 - O(Géi) as €3 — 0. (4.32)
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Casey and Naghdi [6] have shown that, for rigid body motions superposed on a rigid

motion (F=LE=e=w =0),

(@-Q7). (4.33)

DO | =

et=-(Q-D"(Q-1), w'=
Making these substitutions into (4.32) yields
1 3
Et=(Q+Q7-2I)+ 5 (21-Q? - (Q7)*) +O(e}) #£Oases — 0. (4.34)

Clearly this theory is at most invariant for superposed rigid body translations (Q=1I).
Thus, the moderate rotation theory is not properly invariant under arbitrary super--
posed rigid body motions. This situation can be resolved by using the auxiliary
motion or the modified auxiliary motion.

Omitting details, we now apply the auxiliary motion to this entire chapter, thus
rendering the measures e and w objective. In doing so, any difficulty with the measure
of smallness €3 being assigned to tensors that are not properly invariant is resolved. We
note further that, because either the auxiliary motion of the modified auxiliary motion
fixes the rotation at the pivot, the solution R(£,t) of (3.2) is now uniquely specified.
In conjunction with the discussion preceeding (4.28), this places the approach of

Chapter 3 into complete correspondence with the approach of this chapter.
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Chapter 5

A Constrained Theory With Small Strain

and Moderate Rotation

We wish to use the approximations E = E* = O(¢})! and K, = K, = O(g
to simplify the equations governing the motion of a Cosserat curve. In order to
illuminate the desired simplifications, we constrain the Cosserat curve and assume it

is initially straight.

5.1 A Particular Constrained Theory

As we desire to retain shearing motions and longitudinal extensions, we choose to
constrain the lateral extensions. Thus we impose the constraints ¢! = Ef; = 0 and

¢* = E3, = 0. Then, using (2.38) - (2.40), we find that
n= 0, 1_(1 = pldl, l-(2 = pgdz, m* = 0. (51)

Substituting these expressions into (2.33), and subsequently into the balance laws

(2.67) and (2.68) for the auxiliary motion gives us the balance laws of the constrained

1We have returned here to the asterisk notation to signify the auxiliary motion
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Cosserat curve:

R M =0 5.2
A 1x
R o - kl* + Aql = pldl, : (53)
13 :
A 2u
R dm kz* + /\q _p2d2 (54)
9¢
By taking the inner product of (5.3) and (5.4) with d’, we now arrange the balance

laws in two sets: one set having the Lagrange multipliers absent,? and the other set
providing the Lagrange multipliers in terms the solution to the first set. At the same

time, we incorporate the constitutive laws (2.34) - (2.36):

p* 9y dd, -
% (A ——di + A o a§>+)‘f_0’ (5.5)
o (.o W 4 8¢* ddg _
(5E (A 3&1kdk> + A\ — ( an 5% )) d’=0, (5.6)
9 a¢* 2 a¢* ddg -
(5 (52) +2a tomap)) =0 63

o (0¥, ] 9% 9ds ~
(6_5 (A Kok ) AT (E)E* de + K2 _3—5—)) =0 5

o 1 oy* 8d, oy
= (35( )-i-)\ —)\( N ))-dl——)\aEﬁ, (5.9)

o™ 2 oy* ddg 9 oP*
= | — -2 — . .
P2 (aé (Aan;kd)“ (6 = 86)) =5 (5.10)

In evaluating the partial derivatives of 1* in the balance laws, the partial derivatives

are first evaluated and then the constraints are imposed.

2We note here that the complete decoupling in this constrained theory appears to be fortunate
in that the component balance laws governing Cosserat curves with, for example, shear constraints
(Ets = Ej; = 0) require the substitution of the Lagrange multipliers from the balance laws (this
can be seen in the equations of Naghdi and Rubin [47, §9] for a Bernoulli-Euler type rod).
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5.2 Constitutive Considerations

If we expand the derivatives of y* in (2.34) - (2.36) in a Taylor series about the
origin and retain only terms of O(e}?) or larger, we would get cubic terms in the cases
of moderate strain or rotation. Although the moderate strain assumption results in
considerable simplification of the approximations for U(¢,?) and R(¢,t);® and the
associated kinetical vectors n*, k®* and m** the coefficients of the constitutive laws
have not been determined for cubic or quartic terms in the free energy * using
comparisons with the three-dimensional theory of elasticity, and the constitutive laws
are still nonlinear. Therefore, we will not attempt to deal with the consi.:itutive laws
for these cases, as there is no apparent advantage to the approximate theory over the
full nonlinear theory.

Instead, we focus on a specific free energy which has appeared previously in the
literature. Our free energy will not be general enough to encompass all cases of
moderate rotation, but the precise values of its coefficients are known. The free

energy of the rod that we use is invariant under the transformations
d,‘ — :i:d,', D,' - iD,’, f — :!:f (5.11)
The free energy 1* we use is (adapted from [18] and [26]):*

2\ =4 (alEff + a, E32 + a3 E3? + a5E;§ + aGE’fg + a7E} B3y + asES E3s+
ao B3, E3) + 0a (Bf, + E3,)" + caoklt + ki) + anaiy + oaskly +

3
* % *2 *2 * % *7 *
14K}k + aiskas + aiekls + a7k} K5y + O(&°) as g — 0. (5.12)

3See [6, eq. (3.13)] for some of these approximations.
4The notation aj — a7 corresponds to the notation k; — ky7 in [18], [22] and [26].
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Some of the constitutive coefficients for homogeneous isotropic materials deter-
mined by Green, Laws and Naghdi [19], Green, Naghdi and Wenner [26, §9] and

Green and Naghdi [22, §10] are listed below:

pA(l —v)

Q1 = Qg = 03 = -5-(—1_—21/)—, Qs = Qg — EAf(V), (5.13)
vA

a7 =ag = Qg = (IILTZ;;, ayp = ply, an = ph, (5.14)

a1y = EII, a1 = EIz, a7 = O, (515)

where A is the rod cross-sectional area, I; and I, are the referential area moments of
inertia about the lines #2 = 0 and ' = 0 respectively, ¢ = E/2(1 + v) is the shear
modulus, E is Young’s modulus, v is Poisson’s ratio and f(v) is a function of v which
has several alternative forms in the literature.’

Having completed the constrained theory, we should point out that this model
is stiffer in extension than a rod that is unconstrained. Thus, such a model will
underpredict the extensional response of a rod that allows lateral extension (this also
results in higher natural frequencies for extensional vibration). We could adjust the
value of a3 (say to equal EA/4) to correct this problem, but we let this issue stand

here.

5.3 Balance Laws for Constrained Straight Rods

In this section we assume the rod is initially straight and incorporate the free energy

expression (5.12) as well as the strain-displacement relations (3.37) - (3.48) to reduce

526, eq. (9.29)] and [22, eq. (10.29)] have slightly different values for f(v) which were obtained
by different procedures.
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the balance laws to a set of seven equations in the seven unknown displacement

variables.® To do this, we first note that

qa = 0(53)> f= 0(63)7 : (516)
™ 1 B as:t * "
d* =D; + O(&?), A= P + O(€g) as e — 0. (5.17)

We now change to the tilde notation, which refers vectors to the corotational basis

{RD;}. On this basis, the balance laws (5.5) - (5.8) become, ”

9 8643 06 ~1

5 (016 (513 + 63 + 512532) +ags 3;3 3;1) +Af =0, (5.18) .
0 86,5 06 ~2
'('9‘5 (as (523 + b33+ 521531) + a1 623 822) +Af =0, (5.19)

2 .l z oz 6 8bas 53
T (403 (533 + 5 (531531 + 532532)) + ais (723) + ais (—8—) ) +Af =0, (5.20)

) by 0613~ 1 86y 8623 06,3 963,
o (alz( Y + B¢ 523) + 20114( o€ + B¢ 513)) + a6 5 o¢ +

A — ay (512 + by + 513323) =0, (5.21)

B 96y 8by3 - 1 86, 8613 8643 8531
8{ (am( a€ + 6613> + = ( € + 3{ 623)) + ais— 35 Bf +

G — ay (512 + 521 + 513523) =0, (5.22)

3 (o, (P, 9z V) b (10— 2o )é&_(a _1 )é&_z N
3{ 16 65 36 32 35 13 214 (9{ 12 20114 3£

2§ — ag (513 + 63 + 512532) =0, (5.23)

6We do not include the equations for the Lagrange multipliers.

7The kinematic variables are the same in either basis, but the asterisk notation is not valid for
the components of f or 1* in the constrained theory, so, for the sake of consistency, we use the tilde
notation for all variables.
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o€ 12314 ¢ £l 31 o¢ 12 2 14 ER i3 2 14 o€
2§ — as (323 + 532 + 521531) =0, (5.24)

where we have omitted terms of 0(::?,’2) as & — 0.8 Note that & = €y These

equations must be supplemented by the displacement equations (from (2.15))

iy =« iy, =~ Otz «
79?1 = a1, ‘56—2 = b3, al; = b33, (5.25)
and the two constraints:
511 = "‘l 512312 + 513313 ) 522 = —l 521521 + 523523 . (5.26)
2 2

With the constrained equations in this form, one can see that the static coupling
in the moderate rotation Cosserat curve theory is minimal. In fact, in the absence of
flexure (513 = 531 = 523 = 532 = 0), both the extensional and torsional equations are
completely linear. The only coupling is between flexure and extension, and this is only
a one-way coupling — the flexural equations being completely linear, but the flexural
response providing a forcing input to the extensional equations. In Chapter 7 we
provide examples to illustrate these statements as well as to show that the assumptions

made in the theory are valid for some rod geometries and deformations.

5.4 Infinitesimal Theory of Cosserat Curves

In this section we record the component equations for the unconstrained infinitesimal

Cosserat curve theory for future use. These equations are well established in the

8In general, the components f‘ and 1% may be difficult to determine, but, in this dissertation,
we restrict our attention to problems where either f and 1* vanish identically or R = L
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literature, having appeared previously in [18], [20], [22] and [26]. The assumptions
that the rod is initially straight and that both E* and K, are small lead to the linear
balance and constitutive laws of Green, Naghdi aﬁd Wenner [26].

Due to the assumptions made above, which result in leaving the -kinetical vectors

n*, m®* and k** of O(e}) as € — 0 and A}, = 0, the balance laws (2.24) - (2.27)

reduce to®
on* i 2 .
oF +Af =0(e”) as g — 0, (5.27)
amﬂ*i axi ~ari * *
5 k4 20§ = O(€5?) as 5 — 0, (5.28)
B A = O(e?) as € — 0, kM —n™ = O(ef?) as g — 0. (5.29)

The constitutive laws can be obtained by the application of (2.34) and (2.36)
to (5.12), after neglecting terms of O(e§?) as ¢g — 0. We list here, in component

form, the linear constitutive laws:

1 * *2 * 3

n*! = 206E};, n*? =203E3;, n™ =403E3; + 205E7; + 209 B, (5.30)
Il __ * 1 * 2%2 * 1 * 531
m = a10f1 + 5(117&22, m = (11K99 + —z-al'ﬂiu, ( . )
1%2 — * 1 * 2x1 —_ * 1 * 5 32
m™* = ok, + §a14r.:21, m* = aq3ky; + 5 14T (5.32)

13 * 23 * )
m'™ = ayerlz, M = as5K33, (5.33)

k™ = 40, Bl + 207E3, + 208 B3, k¥ = 4y B, + 2a7E7) + 200E3;,  (5.34)
k"% 4+ k¥ = 4oy EY,. (5.35)

The linear equations of motion for an initially straight, uniform Cosserat curve

are obtained by combining the balance laws (5.27) - (5.29), constitutive laws (5.30)

9Note here that because n = Rn*,n' = n-d’, n* = n* - d*' and we have an unconstrained
theory, it follows that n** = n’. Similarly, m®*' = m®* and k** = k™.
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- (5.35) and the infinitesimal strain-displacement relations Ej;, = %(5}} + S;f,-) and

Ko = 065,/ 0¢:
ae% (85 +81) + A (' =) =0,

1(5534‘5;2) +)\(f2—ﬁ2) =0)

as o€
2ag 6;? + 209 85?2 + 43 6553 + A (fs — 113) =0,
0112%2‘;:2' + %0146(;?21 + A (1”12 - yugzz) — 0y (5;2 + 551) =0,
alga;gl + %aua;gzz + A (l~21 - yzzg;) —ay (5{2 + 531) =0,
016 62(23 + A (713 - y“is) — Qg (3;‘3 + 3:*':1) =0,
as 3;?23 + A (723 - y223;3> —as (5{,‘3 + 5;2) = 0.
am—a;g_—gl + %a”a;?z + A (iu — yng:l) — 4046}, — 207655 — 20865, = 0,
an%zg% + %alva;(gl + A (722 — yz"}?;z) - 4a25§2 — 2076}, — 2009035 = 0,

where we have also assumed that the coefficients y' = y*= y'?= y*' = 0.
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Chapter 6

Free Linear Vibration of Cosserat Curves

In this chapter, we will present examples from the unconstrained infinitesimal theory
of a Cosserat curve. We include the free flexural and extensional vibration of initially
straight, uniform, isotropic, rods. These results are seen to be similar to results from .
other rod theories, but we provide some new results in the case of flexure and more
general results in the case of extension. Previous research on the linear vibration of
Cosserat curves include the calculation of wave speeds in straight infinite Cosserat
curves by Green, Laws and Naghdi [19], shock wave propagation in Cosserat curves by
Cohen and Whitman [7], wave speeds in initially curved directed curves by Eason [14]
and extensive analysis of the flexural vibration of a Timoshenko beam by, for example,
Dolph [11], Downs [12] and Huang [33]. The latter vibrations are equivalent to those

of the infinitesimal theory of flexure in directed curves.

6.1 Flexural Vibrations

In this section, we address the general problem of the free flexural vibration of a
Cosserat curve using the infinitesimal theory. As a specific example, we take a circular

cantilever rod and determine the modes of vibration in the 8 — ¢ plane. To determine
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these modes, we calculate the natural frequencies in which the rod can vibrate and
their associated mode shapes. By free vibration we mean the response to initial
displacements and velocities in the absence of abplied loads. In simpler models of
beam vibration, all of the modes typically participate in the free reéponse; however,
for this model (which may be placed in correspondence with the Timoshenko beam
theory), there are some modes that exist only for special geometries. We consider all
possible modes, including one mode that has been ignored in the literature and was

reported recently by O’Reilly and Turcotte [51]. For the Cosserat curve rod model,

the mode shapes consist of the curve displacements and director displacements. In the

case of planar flexure, there is only the displacement u; and the director displacement

823. These are shown in Figure 6.1.

_823

dz N D2
d3
D2 dl 832 = auzlaE_,
A > D;
uz
D, £
p, T

Figure 6.1: Some of the kinematical variables associated with the flexure of a
Cosserat curve.

To ensure that the theory is properly invariant under superposed rigid body mo-

tions, we construct the modified auxiliary motion corresponding to the motion of the
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rod. Since the rod has a fixed end, we choose this end as the pivot ({ = 0). Then the
choice S =1, £ = 0, & = 0 and s(t) = 0 in (2.69), which represents the rotation of the
fixed object to which the rod is attached.! We noté that the original motion is identi-
cal to the modified auxiliary motion in this case except when rigid b;)dy motions are
superposed (where St = Q, and the modified auxiliary motion remains unaltered but
the original motion does not). Because of the trivial nature of the modified auxiliary
motion in this example, we do not use the asterisk or tilde notation; however, all
of the results presented are understood to be associated with the modified auxiliary

motion.

The Cosserat curve’s flexural response is governed by the homogeneaus equations

0 (- o] .
as'a—E (623 + %) — /\Ug = 0, (61)
d% = a 3
153_533 — (523 + %Z) = Ay*2b23. (6.2)

As remarked previously by Green, Laws and Naghdi [18], these equations are identical
in form to those of the Timoshenko beam. The solutions to these equations must

satisfy the appropriate boundary conditions as well as the initial conditions

uz(€,0) = hq(€), 823(€,0) = g1(§), w2(§,0) = ha(€), 523(£,0) = ga(é). (6.3)

Adapting the approach of Huang [33] for the Timoshenko beam, we rearrange these
coupled equations into two separate equations in u; and 823. By taking appropriate

partial derivatives and solving the first equation for 823 to substitute into the second

1For other boundary conditions, such as pinned-free or free-free, finding a known rotation tensor
S requires more construction than we provide here.

49




equation we obtain

64U2 22 (0371 8411.2 /\2y22 84’21.2 82U2
g (v ) sei0 + oy w Vo (64)

as
where we have switched to the partial derivative notation for material time derivatives.

Similarly, by solving (6.2) for duy/d¢, taking appropriate partial derivatives of the

result and substituting them into (6.1) we get

863 \ (y” Lo ) 88,5 Ay?2 046y, . /\32523

—_ . 5
aE ae2082 | as Ot at? (6:5)

13 .
as

We solve these equations by first separating the variables into functions of { and a

harmonic function of time:
Ug = U2(£) sin(wt - QZS), 523 = A23(£) sin(wt - ¢). (66)

Substituting this assumption into (6.4) and (6.5) and canceling the common time

dependent factor we obtain

84U2 2 (22 015) 82U2 2 wz)\y”
o o6 +w Ay + o) 08 +Aw - —-1)U; =0, (6.7)

with an identical equation for Ags.

Following the standard procedure for solving equations of the type (6.7), we as-
sume solutions of the form U, = C,e® and A,z = CieP*. We substitute these as-
sumptions into (6.7) and cancel the common exponential term to get a characteristic

equation (which is obviously the same for u; and 693):

2/\ 22
st + WA p? (y” + a”’) +Aw? (“’ yo_ 1) = 0. (6.8)

Qs
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Using the quadratic formula we solve for the roots of (6.8):

2 (.22 [y2,,4 (22 2 22 2 ¥
pe i () [ (e a) e (-2
2 [,22 (2, ,4 7,22 2 w2 3 :
=_)\;) (i;+ai5>i-’\:’ (Z_w_i.> +-fs—] . (6.9)
The roots p? are clearly always real, but fall into three categories:
Case 1
M2 <as, PE<0, BE>0, (6.10)
Case II
Mt =as, p2<0, p5=0, (6.11)
Case III
MyP2w? > a5, PE<0, pi<O, (6.12)

where p; is associated with the minus sign in (6.9) and p, with the plus sign in (6.9).

For the moment, we focus on case I. We now let p; correspond to the magnitude
of the above roots p; and apply Euler’s formula for complex exponentials to recast
the assumed solutions into sines, cosines and their hyperbolic counterparts. For case

I, the solution is

U, = Acos pié + Bsin p1€ + C cosh p€ + D sinh py€, (6.13)

Ags = E cospi1€ + Fsinp € + G cosh pp¢ + H sinh py. (6.14)

The eight coefficients introduced above are not independent but are rather related

through the original coupled equations of motion. Either equation can be used to
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find the relationships. Using (6.1), the relationships are found to be

E _ /\wz_ F_ /\wz_ _C_;__ Aw?

B - pios hj), A - pras hj, D = |D2 pais ’
H Aw?
- = - . : 6.15
d (Pz pm) (6.15)

The four remaining coefficients are subject to four boundary conditions. Application

of all four conditions yields the characteristic equation for the natural frequencies
of flexure of the rod (this can be done either by eliminating the coefficients A — D
or by forming a homogeneous matrix equation of the boundary conditions whose
determinant must vanish). Once the natural frequencies are established, the eigen-
functions can be determined by application of any three of the boundary conditions.
The free response of a rod with the boundary conditions usually considered can be
represented as an infinite sum in the products of the eigenfunctions and the time

dependent functions in (6.6):?

wp(6,8) = i Up, (€) sin(wnt — da)s Bas(6,8) = i Ags, (€) sin(wnt — da).  (6.16)

Finally, the coefficient of each eigenfunction in the sum and the corresponding phase
angle are found by application of the initial conditions (6.3). In general, the ini-
tial conditions must be transformed to generalized initial conditions (in the modal
coordinates) before the coefficients can be determined.

Turning now to a specific example, the boundary conditions for the cantilever rod

U,(0) = 0, Ags(0) =0, (Azg(L) + ﬁ(L)) —0, 2B(1) =0, (6.17)

d§

2Dolph [11] has shown that the problem is self-adjoint, and therefore the eigenfunctions form an
orthogonal basis on the response space.
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We apply all of the boundary conditions to eliminate the coefficients in (6.13) resulting

in the frequency equation

(El sinh p,L — sin p; L) (sin mL+ il sinh ng) =
1

D2

(cos mL — % cosh ng) (cos p1 L — v coshp, L), (6.18)

where
2 2
_ /\wn — Q5D

7_- Aw? + aspy’

Once the natural frequencies are obtained from this equation, any three of the bound-

ary conditions can be used to solve for the mode shapes:

B sinh po, L — sin p; L

U —'—-An - h ”
2 cos p1§ — cosh pz¢ + v cosh po L — cospy L

(sin né+ %3 sinh pzf)] , (6.19)
1

where the coefficient A, for each mode is determined by the initial conditions (after
reuniting these functions with the time dependent part), and the p; are functions
of the mode natural frequency according to (6.9). This result agrees with that of
Huang [33]. Similar eigenfunctions can be written for A,3 by applying the factors
in (6.15) to the coefficients in the above eigenfunctions, but we do not record these
functions here.

We have yet to examine the results for cases II and III. Case III is a simple
modification of case I, since the only difference is the sign of p2. We simply replace
every occurrence of p; by ip;, where 7 represents 1/—1. This eliminates the hyperbolic
functions replacing them with additional trigonometric functions; but the procedure
for determining the modes is identical. Therefore, we now proceed directly to case II.

In case II, there is only one non-zero root %, so that the assumed solution should
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take the form

U, = A'cospi & + B'sinp 6 +C'éE+ D', (6.20)
Ag3 = E'cospié + F'sinp( + G'éE+ H'. (6.21)
As with case I, the above coefficients are related through the balance laws. Using (6.1)

again, the relationships for this case are found to be

C'=0, (6.22)
with
1

n = (ﬁ + -1—) i . (6.23)
Application of the four boundary conditions in this case leads to a condition on the
geometry/material of the rod (the frequency of vibration has already been determined
in terms of the geometry and material according to (6.11)). The eigenfunctions can
then be determined from some of the boundary conditions. To our knowledge, only
simply-supported beams have previously been considered by Traill-Nash and Col-
lar [61] and Downs [12], and their analysis is incomplete. Applying all four cantilever

boundary conditions (6.17) simultaneously leads to the condition

l y22a5+ (251
2 (0313 y22a5

L
1- E;—- sinpy L + ) cospiL =0, : (6.24)

which depends on the rod geometry and Poisson’s ratio but not on the shear modulus

of the material. The corresponding eigenfunctions are
Uz(§) = A (cospré —7'sinpié — 1), (6.25)

and

Qs

D105

Aaal€) = A'{ s+ (cospié = ] + 1 } L (629)
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where

22
, aisty ascosp L

y?2assinp L
The case II results for the simply-supported rod deserve speéial mention as they
are different from all other boundary conditions including the cantilever case given
above. The boundary conditions for a simply-supported rod in flexure are

dAys3
d¢

dA23

©0)=0, F

U,(0) =0, Uy(L)=0, (L) = 0. (6.27)

Application of the first and third of these conditions leads to A = D = 0. The other

two conditions lead to two possibilities, which are B = 0 or p; L = n7 (n = 1,2,3, )
If we choose B = 0, this mode exists for all materials and geometries and has the
simple shape

U(é) =0, A3 = H. (6.28)
This solution was first obtained by Traill-Nash and Collar {61] and was subsequently
rediscovered by Downs [12]. The other mode, which occurs at the same frequency
and has not been reported on previously to our knowledge, will exist if, and only if,

s 1 z
pl=|—+-) L=nr (n= 1,2,3,...). (6.29)

O35 Y

This condition places restrictions on the material/geometry combination similar to
the condition on the cantilever rod. The corresponding eigenfunctions for this mode

(when it exists) are

1
P~ — p1> cosp & + H. (6.30)

Uy(€) = B'sinpié, Axn(é) =B (
Further details of these results, in the context of Timoshenko beam theory, can be

found in O’Reilly and Turcotte [51].

35




As an illustration, we determine the cantilever rod modes for cases I and III
by fixing the material and geometry (we choose a circular steel rod with v = 0.3,
R=0.1m and L=1.0m) and iterate the frequency-equation (6.18) to find the natural
frequencies. We substitute these frequencies into the eigenfuncti(;ns and plot the
resulting functions in Figure 6.2, where we also plot the corresponding eigenfunctions
for Ay3. One should keep in mind that the amplitudes of the functions U(¢) are
arbitrary until the initial conditions are invoked, but the relative amplitude of Ag; to
U, is fixed by the analysis.

The first eight modes are from case I, and the remainder are from case IIL. It is
interesting to note that case I modes have an additional node for each new mode,
but this is not true for case III. The associated natural frequencies are plotted in
Figure 6.3, where we have also ichated the dividing line between cases I and III
(i.e., the case II frequency).

We also note that the case II frequency does satisfy the frequency equations for
both cases I and III, but is not a mode of this rod since the material/geometry
combination used to compute these modes does not satisfy the condition for case II
vibration (6.24). To satisfy this condition for plotting purposes, we keep the length at
one meter and Poisson’s ratio at 0.3 and adjust the radius to 0.0909m. The resulting
mode shapes are plotted in Figure 6.4. Other possible combinations of length and

radius that satisfy (6.24) are plotted in Figure 6.5.
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Figure 6.2: The first twelve flexural eigenfunctions of a cantilevered (fixed-free)
Cosserat curve with g = 82.7GPa, p} = 7500Kg/m®, v = 0.30, L = 1.0m and

R =0.1m.
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Figure 6.3: The first 19 flexural eigenfrequencies of a cantilevered Cosserat curve
with yu = 82.7GPa, p} = 7500Kg/m3, » = 0.30, L = 1.0m and R = 0.1m.

6.2 Extensional Vibrations

The linear equations for the extensional vibration of a Cosserat curve are unique
in their inclusion of transverse extensional vibration for rods that are not circular
(Mindlin and Hermann {44] did include transverse inertial effects for circular rods,
but no theory other than the Cosserat theory of Green and Naghdi includes trans-
verse extensional vibrations for non-circular rods). Other rod theories that consider
transverse effects generally have only one direction of freedom, requiring the trans-

verse response to follow the longitudinal response according to the Poisson effect (for

example, Love’s correction [41, §278]).
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Figure 6.4: The case II mode shape for a cantilevered Cosserat curve with p =
82.7GPa, p} = 7500Kg/m>, v = 0.30, L = 1.0m and R = 0.0909m.
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Figure 6.5: Case IIlength and radius combinations satisfying the existence condition
(6.24) when p = 82.7GPa, pj = 7500Kg/m® and v = 0.30.

To keep the theory properly invariant under superposed rigid body motions, we
construct the auxiliary motion. Since the rod has a fixed end, we choose this end
as the pivot (£ = 0). Then R = I and the original motion is again identical to the
auxiliary motion except when rigid body motions are superposed. Because of the
trivial nature of the auxiliary motion we suppress the asterisk notation, but we claim
that all results are properly invariant under superposed rigid body motions.

The equations for the linear free extensional vibration are (assuming y'= y* =
y12= y?=0):

db1; 9822 9833

20{8‘% + 2a9-a—€— -+ 4a3——8§— — iz = 0, (6.31)
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62311 62 322

1 = - - -

am—ﬁ + Four ez Ay'téy; — 40n 61y — 207625 — 208633 = 0, (6.32)
8y 1 3% z z z z

au_ag% + §a17 35;1 - /\y22522 — 40652 — 207611 — 209633 = 0. (6.33)

We intend to use a rectangular section in our example so that a;7 =0 (see (10.42) of

[22]). As usual, we proceed by separating variables and assume that

uz(¢,t) = Us(€) sin(wt — ), 511(6, t) = Aq1(€) sin(wt — ),

Baa(€,1) = Agy(€) sin(wt — 4). (6.34)

We also need to incorporate (5.25) to reduce the problem to three equations in three

unknowns. Incorporating these assumptions and putting the equations in matrix form

yields
- - " W - - ¢ Y\
2
da3 0 0 Za 0 20s2a9| | &2
0 aip O <%‘-zu?+—2a800 | %t
| 0 0 an \——21"”3?2 ] |2 0 0] \Qggz‘
- " '4 W { 3
)\w2 0 0 U3 0
0 ()\wzy" —4a1) —-2&7 ] Au b= \ 0 - (635)
0 —2a7 (/\w2y22 — 402) k1322 0
L - / \ 7

Now since the center matrix in the above system cannot be made proportional to
the other two, we multiply through by the inverse of the first matrix and transform
the second order system into a larger first order system using the usual state-space

approach (in our case, however, the independent variable is spatial rather than tem-
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poral):

( 3 B 4 W
g 0 0 0 1 0 0 W Us
T 0 0 0 0 1 0 An
Th 0 0 0 0 0 1 An

1 y = ] ) (6.36)
92Us _Aw? 0 0 0 —Q8 _ o Uy
a¢2 4ag 203 2a3 o¢
824y, 0 ety 207 20 g 84y,

862 10 @10 [+ 371] 35
8245, 0 207 dag—Iw?y?? 2a9 0 0 8Aq,
| 9¢% ) i an an ary 1L %

or
{z'} = [A}{=}.
There are many methods in the controls and linear algebra literature for solving
(6.36), but our intent is simplicity rather than efficiency. We take the straight-forward |
approach of assuming a solution of the form {z} = {C} €. The general solution that |

follows from this approach may be written as

4 A { W
Ty Us
T2 A
z3 Az 6 "

) = { b =Y Ci{¢}, "¢, (6.37)
T4 %{? 1=1
Is _11.335

842
\ xe 7 \ 65 7

where the p; are the eigenvalues and the {4}, the eigenvectors of the matrix [A]..
The constants C; must be determined from the boundary conditions. Note that

the eigenvalues and eigenvectors depend on the frequency w. The frequency used

62




to find the eigenvalues and eigenvectors is not a natural frequency of the system
unless it makes the determinant of the boundary conditions vanish. We form the
boundary condition equations by applying the Boundary conditions to the general
solution (6.37). |

As an example, we take a fixed-free rod for which the boundary conditions are

( ) () ( ) R
Us(0) 0 n3(L) 0

{ A1 (0) =_< 0 (> Q%GLL(L) =40¢- (6.38)

\A22(0)J \0J \%?(L)A \01

The resulting matrix equation for the boundary conditions is

1 4 3\ 4 3

%) én $3 a1 #s1 de1 Gy 0
b12 b22 #32 P42 P52 P62 C, 0
$13 P23 P33 P43 P53 P63 Cs 0

s EXRE (6.39)
M N, N3 Ny Ns Ng C, 0
bs16P L perePrl pszeP L dsqePrl pssersl psgerel | | Cs 0
Pe16” L poreP?l poze™l poaem L dese”t dece™ | | Co 0

o \ / 7

where the ¢;; are elements of the eigenvectors {¢}; (the second index j indicates the

eigenvector and the first index ¢ indicates the row of that element), and
N; = (208¢i2 + 2a9¢i3 + 4azdis) €”X  (no sum on ).

The natural frequencies of extensional vibration are those values of w that make
the determinant of the matrix in (6.39) vanish (any other solution to the above
equation is the trivial one). They can always be found by plotting the determinant

as a function of w, though more efficient methods can be devised. Once the desired
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natural frequencies are found, the mode shapes are determined by substituting the
corresponding natural frequency back into (6.39), assuming a value for one of the
coefficients Cj;, solving (6.39) for the remaining Acoefﬁcients and substituting these
coefficients back into (6.37). |

In order to create some plots of these modes, we chose a steel rod and fixed the
geometry. Recalling (2.52), (5.13) and (5.14), the extensional constitutive coefficients

and inertial coefficients for a rectangular rod are

ubh(1 —v) vubh pbh® phb®
= - - — =) = (g = —, (19 = —— = —
(03] (85) Qg 2(1 _ 21/) y Q7 8 9 1 — 2" 10 12 an 12’
h? b2
11 22
= e d _ .
12 Y T

The equations (6.39) are somewhat ill-conditioned for structural materials, so we
use a relatively thick rod with L = 0.lm, b = 0.02m and k = 0.0lm. The first
four natural frequencies for this rod are 85.8, 256, 424 and 584 thousand radians
per second, and the mode shapes are plotted in Figures 6.6 and 6.7. The first three
natural frequencies correspond relatively well to those of the elementary theory for
longitudinal vibrations of a bar (the theory having a single displacement variable),
but later modes have significant interaction with the lateral extension. Thus, at least
for a thick rod, the elementary theory diverges from a more complete theory after the

first few modes.
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Figure 6.6: The first and second extensional modes of vibration for a fixed-free
(cantilevered) Cosserat curve with p = 82.7GPa, pj = 7500Kg/m®, v = 0.30, L =
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Cosserat curve with y = 82.7GPa, p} = 7500Kg/m?, v = 0.30, L = 0.1m, b = 0.02m
and h = 0.01m.
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Chapter 7

Examples in Moderate Rotation Theory

We present examples here to show how the theory established in Chapter 5 can
be used. In order to insure that our examples are valid, we will have to choose
appropriate loads and lengths so that the rotation and strain are of the proper order,
as we are now dealing with a nonlinear theory. It will become apparent that the
moderate rotation theory is semsitive in this respect. We will show that, while a
certain geometry is acceptable for a given deformation, it is not valid for another
deformation. If necessary, the theory can be adjusted by changing the assumptions
to suit a desired application, but we do not pursue this issue here.

The examples are again restricted to the case of initially straight, uniform rods,
and, since they all involve cantilevered rods, we again use the modified auxiliary
motion with S =1, £ =0, & = 0 and s(¢) = 0 in (2.69). We shall also drop the tildes

associated with the modified auxiliary motion in this chapter.
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7.1 Static Response to a Uniform Distributed

Load

As a first example of moderate rotation, consider the case of a distributed load in
the —D? direction which is 408 times the weight of the rod. Use of a circular rod
implies, from the balance laws, that the displacements 819 = 831 = 613 = 631 = 0. This
results in an uncoupling of the flexural equations and leaves them linear. Thus, the

flexural equations are solved in the usual manner, and the solution of the extensional

equation is then dependent on these results. The parameters will be carefully chosen

so as to satisfy the assumptions of the theory. We first set the measure € = 0.0001.
We choose steel as the material with u = 82.7GPa, p§ = 7500Kg/m® and v = 0.30.
Next, we arbitrarily choose the length of the rod as one meter, but the applied load
is selected based on the knowledge that it would produce the maximum deformation
€23 = € at the fixed end. Finally, the radius is chosen as R = 0.1m to make the tip
rotation moderate. The assumptions of the theory regarding the partial derivatives
of strain and displacement will also be satisfied in this example, as will be shown in

Figure 7.1.

7.1.1 Flexural Response

We begin by solving the flexural equations, which are

0 /- _

asgg (523 + 532) +Af? =0, (7.1)
9% = =

als?f? — Qs (523 + 632) =0. (72)
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The boundary conditions for flexure are, again,

ug(0) = 0, 823(0) =0, n*(L) = as (8as(L) + 5a(L)) = 0,

m?(L) = a15%(L) = 0. | (7.3)

The solution is obtained by first integrating (7.1) with respect to £ and then applying

the third boundary conditic;n:
(673 (523 + 532) + /\f2 (6 - L) =0. (7.4)

Next, we substitute this result into (7.2), integrate and apply the fourth boundary
condition:
8833

Integrating again and applying the second boundary condition gives

b= -1 +

_ )\fz 53 sz sz
s (—6— - -2— T) . (7.6)

We can now substitute this result back into (7.4), and then introduce the second

of (5.25) to recover thé displacement u,:

_5,= 2 5 f2 f2(€_L& L%
‘3—5'—532— o (—L)—bs= (f L)+ a15(6_ 5 T 2)- (7.7)

Finally, we integrate once more and apply the first boundary condition:

2 4 3 2¢2
_—,\fz[ - (52 L{) —-Ci—s(é%—%+%§—)] (1.8)
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7.1.2 Extensional Response

We now address the extensional deformation. Recalling (5.20), the equilibrium equa-
tion is :
2\ 2
0 < 12 - a6
& (403 (533 + 5632632) + ags (“6_2,3> ) = 0. (79)

The boundary conditions for extension are

U3(0) —_ 0, na(L) = 4&3 (533([/) + %532([1)532([/)) + 15 <%’(L)) = O. (710)

The second boundary condition reveals that E33 = 0 throughout the rod. We integrate
the equilibrium equation, recall the third of (5.25) and apply the second boundary

condition to get the simple result

(7.11)

b33 = -7 = — 03263 — —a'z‘

3U3 1. - ﬁ!i 6323 2
3{ 2 4&3 )

The result usz is obtained by integrating (7.11), and the constant of integration van-

ishes due to boundary condition (7.10):

21\ 2
u3=—(’\f) L_Yl_g (%{3—L§2+L2§) 1 (%{5—§L54+§L2€3—%L3£2)+

2 Qas5Qgs

L (L _Lreoylpaes Lrages 143)
402, (636 gL + 3L — S L+ 317 ) +
1 (1, 1w loga 130 l4)]

Next, we plot the displacements. First, it should be noted that the coefficients a3,
as and a;s are given in Section 5.2. The applied load is Af* = —408g p5 D, =
—4000 p% D, which yields A f2= —4000 p§ © R? and /?*= 0. The numerical results are
shown in Figures 7.1 and 7.2, where we have also plotted the results using the initial

strain-displacement relations from the alternate definition of moderate rotation (4.17)
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(corresponding to Casey and Naghdi [6, §3.3]) to show that the two methods are in
agreement to the order of approximation prior to making any simplification.
Reviewing the component results in Figure 7.1, it is clear that the supremums of
the components 823 and 832 increase only by a factor of three upon ta.king their partial
derivatives, while the components themselves are clearly moderate. The measure ez;
and its partial derivative with respect to ¢ are also seen to be small, as required by

the assumptions of the theory. We therefore deem the theory to be valid for this

example.

7.2 Free Flexural Vibration in the First Mode

We consider here the fundamental flexural vibration of the rod used in Example 1. The
beam will be released from rest in the mode one position (it is understood that both
U, (€) and Ay3(¢) must begin in the fundamental mode), and will therefore continue
in mode-one flexure perpetually. In the moderate rotation theory this will cause a
forcing input to the extensional vibration equations that will result in an extensional
vibration. To make the theory valid, we need only verify that the amplitude satisfies

the assumptions of the moderate rotation theory.

7.2.1 Flexural Response

We recall first that, in the moderate rotation theory, the flexural equations are in-
dependent of the extension and are, in fact, the linear flexural equations. Thus,

we may apply the results of the infinitesimal theory but with a vibration satisfying
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Figure 7.1: Static deformations of a cantilever rod due to load A f> = —4000 p3 A
with y = 82.7GPa, p} = 7500Kg/m3, v = .3, L = 1.0m and R = 0.1m.
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Figure 7.2: Static displacements of a cantilever rod due to load A f2 = —4000 p; A
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the assumptions of the moderate rotation theory. Using the geometry and mate-
rial of the example of section 6.1, we iterate the frequency equation to find that
wip = 919.59rad/sec. We substitute this frequenéy into the mode shape and seek an
amplitude A, that makes the root strain small but the tip rotation ﬁodemte. Letting
€0 = 0.001, an amplitude of A; = 1/70 approximately satisfies these requirements.
The deformation U,(€) is shown in Figure 7.3, which also shows several of the other
deformation measures needed for future analysis. One can see clearly from this fig-
ure that the supremum of 2ey3 is of O(€o) while the supremum of Ajz; is moderate
(O(eé/ ?)). What is interesting about this figure is that we can use it to observe the
order of all terms in the balance of director momentum equation. Upon doing this we
discovered that while (after dividing through by as) both terms on the left-hand-side
of (6.2) are of O(e), the right-hand-side (the difference between the other terms) is
smaller than O(eg/ %). This circumstance is not expected from the theory nor is it

excluded by the assumptions.

7.2.2 Extensional Response

We now consider the extensional vibration. This is governed by

0633 ’uz 9833 - 8%632 9632
. - A o —4daz——033 — 2015 ez o¢ (7.13)

4(13

where 63; = d—ggsin(wt — ¢) and 823 = Agssin(wt — ¢). Since the right-hand side

of this equation is a known function of ¢ and ¢, it can be solved as an uncoupled

partial differential equation. Strictly speaking, the initial conditions of the extensional

deformation must also be considered; however, for our purposes such consideration
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would take us far beyond the point of this example and would only involve standard
methods (cf. [42, Ch. 7]). Therefore, we shall consider the initial conditions of the
extensional deformation to be such that only the pérticular solution (also known as the
steady-state response in the vibration literature) survives. Without ioss in generality,
we set ¢ = 0 (i.e., 833 = dU,/d¢ sinwt and 823 = Aggsinwt, an assumption which
only involves a shift in time of the harmonic response) and recall the second and third

of (5.25) to transform the above equation:

3%us 0%u3 d*U, dU, PAydAs\ .,
4o B¢z —A 5 = (403 i —d-g-+2a15F 7 sin® wy .t (7.14)

d?U, dU. d*Aq3 dA
=— (2a3 d§22 d§2 + ass d6223 d§23) (1 — cos (2ws.t)).

The appropriate boundary conditions are

3 Jus 1 [ Ju, 2 Bbys ?

u3(0,t) =0, n>*(L,t) =4a3 {E(L’t) + 3 (—a—é—(L,t)> :I + aas ( o (L,t)) =0.

(7.15)

The forcing frequency for extensional vibration is twice the vibration frequency of the

flexural response. There is also a static component to the forcing function, which is
clearly apparent after noting the right-hand-side of (7.15).

The solution is complicated by the second boundary condition, which is time de-

pendent. Meirovitch [42, pp. 300-308] discusses a method of solving such equations.

We will take his approach but provide a minimum of details on the method. The ap-

proach, which he partially attributes to a statement made by Courant and Hilbert [9,

p- 277], involves assuming a solution of the form

us(é,t) = (&, ) + h(E)(2), (7.16)
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where the function

£(t) = das Eg?(L,t) - (B;;(L t))2 _ ong (3§§3(L t))2 , (7.17)

is introduced to account for the time-dependent boundary condition, and v(¢,1) is
a function intended to have only homogeneous boundary conditions. The function
h(¢) must then be established to satisfy the boundary conditions. In terms of these

functions, the balance law and boundary conditions are

- d*U, dU2 d’Aq3 dAg3
403 a¢2 (E t) — 8t2 (f,t) (20{3 i & + ags 7 dE ) (1 — cos (2w ,t)) —

d’h(¢) f(¢) |
da =gz £(8) + A(E) =g (7.18)
v(0,t) = —h(0)£(2), 4a365(L t) = f()(1—4a3—(L)) (7.19)

To render the boundary conditions on the function v({,¢) homogeneous, the condi-

tions on the function A(¢) must be

h(0) = 0, 4ast(L) 1. (7.20)

There are many simple functions that satisfy these conditions. In a similar example,

Meirovitch [42, §7-14] used a step function. Here we chose the smooth function

ME) = :as (1 — cos (2’;5)) . (7.21)

We are now in a position to find the response v(¢,1).

We begin by finding the natural frequencies and normalized eigenfunctions. This

is done in the usual way, separating variables and applying the boundary conditions

Wa = (—zfi——lﬁ\/ij\—_a \/gsl ( (2n — L 5) . (7.22)

to find




We now introduce the modal coordinates Ma(t) by invoking the expansion theorem
(i.e., assuming the response v(,t) to any excitation can be represented by an infinite

series in the eigenfunctions):

oe,t) = 3/ sim (@fﬁf) m(t) (7.23)

Next, we substitute this assumed solution into (7.18) to get
2n—Ur\? . [(2n—1)x
—4as Z (T) sin (TE Mn(t) —

n=1
. ((@n—1)7 .\ Pna(t)
'3y L™ ( 2L f) ar

n=1
d*U, dU2 d*Ag3 dA s
— (2a3 d€2 dé + ais dfz _df-_) (1 — COS (ZwlFt)) —

(o S8 1) 4 2 1 (7.21)

We now take advantage of the orthogonality of the eigenvectors V;,(¢) by multiplying
this entire equation by V,,(£) and integrating along the length of the rod. In doing so,
only the m*” terms of the series survive, and the resulting modal equations of motion

become uncoupled:

dznm(t)

T w2 m(t) = Na(2), (7.25)

where

VAL “agr dE T e
T T dU, ays [ dAg3 2
2L (ﬁf) ( ( & <L)> + 2 (% @) )
/\Lw2 T 2 2 (03] 2

225 o5 () 22 ) o

_ 2 L . (2m - 1)7!‘ d2U2 dU2 d A23 dAzg
= E{/o [sm (—————ZL 5) <2a3 T -E--i-a ——d€2 7 )] dé+
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T (a3 (%(L))Z +5 (dil'\‘{”(L))z) } (1 = cos (2w 1)) +

\/;i;%“ifﬂ% ((%( L)) + % (d?;S(L)) ) cos (2w1 1) , (7.26)

where

2L

L 1 1
Vn = — [F———(COSW(TI’L—1)—-1)-[—-;;((:087717!‘——1)], Y = Vm+7"(7n—"—1)‘

S 2r {7r(m—1)
Note that the first term in the expression for v, is understood to vanish for m = 1.

The responses n,(t) can be resolved into the static and dynamic components
respectively as m(t) = Nmg + Nmy(t). One can immediately solve for the sta,tic.

components:

_ 4L AL L . (2m— 1)7!' d2U2 dUg (6373 d2A23 dA23
[/ Sm( 2L 5) (d€2 Z oo de & )7

fﬁ@[l)z,
il \ dé

For the dynamic part, we assume a solution of the form 7 ,(t) = Cp cos2wigt,

(7.27)

substitute into (7.25) and solve for the coefficients Cy,:

G — [Mmm ((@(L))z g o ("’A”<L>)2) —w,%,nms] -

W2, — 4wl x dé 203 \ d¢

(7.28)

The total modal responses are then given by

1 2w V2AL dU;, \*  ous (dDas, .\’
m t) = £ m - -
7im (1) wZ — 4wl " (( d§ (D) + 2a3 \ d (L)) ] (cos2rst)
Wi,
Nms <1 T~ 4o cos (2w1Ft)> . (7.29)

Finally, the extensional response is determined by substituting these modal responses
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back into the series (7.23) and substituting the resulting expression into (7.16) to get

o

us(&,1) = (€, 8) + h(E)F(t) = D VialE)m(t) —
ah(e) ((dd—[?u)) v (G2m) ) (1~ cos (2en1) =
© [2  (@m—1)r 1 2w} VoML Uy, .\
{mzzl \/—x——;sm( oL 5) o2, — 4, - Tm ((E(L)) +

ays [ dAogs ? nmswrzn
e (Gew)) -5
L {(dU P s (dBg, ) ™
= ((f([,)) + 2as ( 2 (L)) ) (1 - (cos E&))}cos (2wi,t) +
> /2 . (@m-1)7
D )

5[-,7; ((%(L))z N géi' (d?;s(L))z) (1 — cos (2—7;—5)) ,  (7.30)

where we have separated the response into time and spatial dependencies: u3(¢,t) =

ua, (€,) +usg(€) = Us,(€) coswyt+usg(€). Note that thereis a “static” displacement
over which the time dependent part gets superimposed. Also note that because the
natural frequencies of the extensional modes are much higher than the frequency of
the flexural vibration (the first mode is a factor of five larger), the difference between
these two responses is quite small. This makes the total response nearly zero at the
same instant of time that the flexural response is zero. We note that our choice for
h(£) results in rapid convergence of the series, and we show the sums of the first eight

terms in Figure 7.4.!

1[42] contains a footnote stating that many different forms for k() may be suitable in a given
problem. We know of no proof that all such functions converge to the same result, but in using the
step function that Meirovitch used in his example [42, Example 7.2] we achieved the same result as
with our choice of h(€) (7.21) except that about 70 terms were required to reach the same level of
convergence.
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Figure 7.4: Extensional deformation due to the first mode of flexural vibration in a
rod with p = 82.7GPa, p} = 7500Kg/m?, v = 0.30, L = 1.0m and R = 0.1m.

7.3 Free Flexural Vibration in the Fifth Mode

We consider here the fifth mode of flexural vibration of the same rod as the previous
examples, but this time in the fifth mode. We will show that the assumptions of the
moderate rotation theory are not satisfied for this motion. To make this clear, we
state the primary assumptions in clear terms (using our alternate definition of small

strain with moderate rotation) as

(A2s + Asz) = O(&) as eg — 0, (7.31)

N o

€23 =
1 ;
W3 = 5 (Azg - Agz) = 0(60) as €g — 0, (732)
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where we are now considering the A;; to be the values of the corresponding §;; at the
time of maximum excursion of the vibration. We seek an amplitude As for the fifth
eigenfunction (6.19) that satisfies the above conditions for say €p = 0.001 (5(1)/ ? % 0.03).
We show the numerical values of the deformations A,3 and Aj; for én amplitude As
that satisfies (7.31) in Figure 7.5, where we also show the numerical results for the
maximum values of wy3 and ey3. The strain and rotation at this amplitude are both
small. If we increase the amplitude, both measures will increase by the same factor.
Thus the strain and rotation are always comparable in order (when the strain is
small, the rotation is also small; and when the rotation is moderate, th:e strain is a.lso.
moderate). Consequently, the moderate rotation theory cannot be applied in this
case. If we desire to study the theory in mode-five flexural vibration, we must alter
the rod to suit the assumptions of the theory. Reduction of the rod radius tends to
make the order of the rotation larger than that of the strain. If we reduce the radius
of the rod from 0.1m to 0.02m, the mode-five deformations shown in Figure 7.6 result.

In this case, the strain can be small while the rotation is moderate, and the theory is

valid.
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Figure 7.5: The fifth mode of flexural vibration for an infinitesimal theory with
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Chapter 8

Free Vibration of a Whirling Rod

8.1 Introduction

The study of the free vibrations of a rod whirling about a fixed end has a long history.

Here, the rod is spinning about a fixed axis, as indicated in Figure 8.1.) The whirling

=8 Td;

Figure 8.1: A Cosserat curve whirling about the D;(0) axis.

of the rod alone induces stretching in an unconstrained theory and may induce other

1This figure also illustrates various bases, which we will subsequently define. Also note that
S = S(t) is conveniently taken to be the rotation tensor of the shaft to which the rod is attached.
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deformations as well, depending on both the material and geometric symmetries of
the rod. In addition to these deformations, the rotation also affects any superposed
vibrations, altering both the frequencies and shapes of the modes as compared to a
stationary cantilevered rod. Due to the variety of applications, it i; of considerable
interest to examine these vibrations to determine the spectral responses and linear
stability of the whirling rod.

This problem interests us not only because of its application to turbomachinery,
propellers and helicopter rotors, but also because our properly invariant auxiliary
motion is well suited to this type of problem. While aerodynamic forces are generally
important in applications and can easily be accounted for in the Cosserat theory (in
the terms Af and A1*), we do not consider them in this chapter. This chapter serves
as an example of how O’Reilly’s [50] properly invariant approximate theory can be

used and provides a contrast to the usual approach taken in approximate rod theories.

8.2 Previous Work on Whirling Rods

The literature abounds with work on whirling rods. Leissa, in his review article [38],
provides 102 references pertaining only to rotating blades, and many more articles
have appeared since his review. Another review article, by Rao [53], lists 140 refer-
ences. Most of these articles address the vibratory response under constant rotation
speed, but numerous effects have been repeatedly considered. These include flexu-

ral, extensional? and torsional vibrations; both coupled and uncoupled. They also
p p y

2By extension, we mean here longitudinal extension (see, for example, Anderson [1] or Hodges and
Bless [29]). The lateral deformations (due to the Poisson effect) are not discussed in the references
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include the effects of hub radius, attachment angle, tapering, pretwist, asymmetry
of the reference configuration, and material nonlinearity. However, the rod models
used are generally established in an ad hoc mannér using variational principles com-
bined with kinematical and constitutive assumptions (see, for exarﬁple, [1], [3] and
[37]). Furthermore, the correct formulation of the problem involves delicate scaling
arguments. Surprisingly, there is still controversy in the literature on these issues
(cf. the discussions of Hodges [30] and Ko [36], for example). There is also a large
body of related research in the astronautical literature (see, for example, Levinson
and Kane [35], [39] and Simo and Vu-Quoc [58], [59]).

An improved rod model will help to solidify the theory of whirling rods. For
example, Bhuta and Jones [2] used the one-dimensional wave equation to study the
effects of rod rotation on extensional vibrations and predicted a decrease in the nat-
ural frequencies due to the rotation. Hodges (28] later pointed out that the natural
frequencies of the extensional vibrations may actually increase rather than decrease
compared to the fixed rod, depending on the material nonlinearities, however, his
model was also highly simplified (we have seen, in Chapter 6, that lateral extensions
can be included by use of the Cosserat curve model). His discussion should, however,
caution us about drawing general conclusions regarding the effects of the rotation on
the eigenstructure of a given rod.3

Another issue of controversy concerns the inertial terms. Most previous researchers

(for example, [1], [2], [28], [62] and [37]) have chosen to neglect the Coriolis terms

we cite in this section.
3See Hodges [27], Venkatesan and Nagaraj [62] and Hodges and Bless [29] for further details on
this effect.
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coupling the extensional and flexural vibrations of an otherwise uncoupled straight
rod. After neglecting the Coriolis terms, Lee and Lin [37] recently obtained exact
flexural eigensolutions for the cases where the coefficients in the resulting partial
differential equations are polynomials. Rao and Carnegie [54] and [55] did consider
Coriolis effects, but they used the nonlinear theory derived by Carnegie [3], which
differs substantially from other theories, including ours.* It is our opinion that the
Coriolis terms should not be neglected in an eigensolution unless it is restricted to
cases where applied forces sufficiently dominate such terms. It is interesting to note

that Leissa [38] points out that there is still debate on this point.

8.3 Properly Invariant Small Deformations

Superposed on a Large Deformation of a
Whirling Rod

O’Reilly [50], while not specifically addressing the whirling rod, provided a properly
invariant approximate theory of rods for small motions superposed on a large motion
that is well suited to this problem. His theory, which is based on the Cosserat theory
of Green and Naghdi, uses momentum balance laws to determine the equations of
motion. It also accounts for arbitrary large motions accompanied by infinitesimal
superposed deformations. The resulting equations take on a more familiar form after

being written in terms of the auxiliary motion, which is equivalent to referring the

*Carnegie 3] neglects longitudinal extension but considers axial motion due to the integrated
effects of flexure, which results in the presence of nonlinear Coriolis terms in his equations.

88




motion to a corotating frame except that it is properly invariant under superposed
rigid body motions.

We will use the unconstrained theory in our derivation, formulating the problem
as one of small vibrations superposed on a large steady deformz;tion. The large
deformation is caused by the rotation of the rod at a constant angular velocity. Many
of the subsequent developménts parallel those of Green, Knops and Laws [16], and we
refer the reader to their work for details, especially concerning the constitutive laws

for a theory of small deformations superposed on a large deformation. For simplicity,

we perform most of the analysis on a corotating reference frame, but, in the case

of an unconstrained Cosserat curve, such analysis is formally equivalent to the use
of the properly invariant modified auxiliary motion. Consequently, our results will
be properly invariant under superposed rigid body motions according to the theory
developed by O’Reilly [50]. Because we do not anticipate solving for the large steady
deformation, we leave the rod material and geometry general. In particular, we permit
the possibility that the rod is composed of an anisotropic material. As discussed by
Green and Naghdi [23], the Cosserat theory they developed is sufficiently general to
encompass this case.

By a steady, large deformation, we refer to the deformation which exists in a
rod whirling at a constant angular velocity. As we are restricting our theory to
elastic rods, we presume that, but do not consider the mechanisms by which, the
transient vibrations (those that normally accompany a spin-up from a stationary rod

to one spinning at a constant angular velocity) subside. This large deformation is
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one in which the components of all vector-valued quantities, when referred to the
corotational basis {SD;(0)}, are independent of time. This implies that the properly
invariant strain measures associated with this motion are independent of time. We
note that this definition is consistent with the notion of a steadyi motion used in
the literature on whirling rods. Once the large motion is determined, superposed
vibrations may be considered.

The superposed small deformations we consider are infinitesimal vibrations. To
obtain the balance laws for these deformations, it is appropriate to linearize the
balance laws for the Cosserat curve about the large deformation. For consistencyv
with the notation of O’Reilly [50], we use the notation 5( ) for the full motion and
1( ) for the large motion. We also use the designation 5;( ) for the superposed or

difference motion. Thus, the variables of the motion may be decomposed as
2n(£7t) = ln(f,t) + 21n(Evt)’ Zma(é‘)t) = lma(é?t) + 21ma(€7t)a (8'1)

k(& 1) = 1k (&,t) + uk®(6,t), 2u(,t) = 1u(é,t) + u(é,t), (8.2)

268(£,1) = 165(€, 1)+ n85(€, 1), 2dp(€,t) = Dp(€)+265(8,t) = 1dp(€, 1)+ 2184(¢, ).
(8.3)

We note here that the boundary conditions for the problem are

2u(0,8) = 0, 5da(0,) = S(t)Da(0), on(L,t) = ;m®(L,¢) = 0. (8.4)
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8.4 Balance Laws and Responses

We begin with the balance laws for the modified auxiliary motion associated with
the full motion of the Cosserat curve, fixing the origin of our reference frame at the
point where the directed material curve is attached to the rotating shaft. The right-
hand-sides of the balance laws are easily obtained from the counterparts of (2.67)
and (2.68) for the modified auxiliary motion. For the problem of interest, we choose

S=S(t),£=0,¢=0and s =0 in (2.69). The non-trivial balance laws are

=2 = asT(1) [nzs(t) 2F(6,8) + 2028(2) 2V (€, 1) + S(2) 2V (£, 1)+

y® (275(2) 2d(6,1) + 2025(t) sWs (6, 1) + S(8) 2aWa(6, )], (8.5)

d,m* - ~ . .
BE K= AT [p (278(0)2da(6, 1) +2025(8) a6, ) +S(0) W (1)) +
v (22S(2) oF (€, 1) + 2025(2) 2 ¥(6,1) + (1) 2V (6,1)) |, (8.6)
where 2 = SST represents the angular velocity temsor, which is assumed to be

constant. Note that the form of the balance laws are such that y* # 0.

The tilde notation in (8.5) and (8.6) refers to vectors of the modified auxiliary
motion (for example, dg = STdg). As the pivot rotation tensor R(§ = 0) differs
from the shaft rotation tensor when shear is present at the cantilevered end of the
rod (and shear generally is present, even for the steady motion, when the rod lacks
adequate symmetry), we have not used the standard auxiliary motion in this problem.
Furthermore, the rotation tensor at the pivot due to shear in the steady, large motion

may itself be large.
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Assuming the referential basis of the rod D;(£) to be orthonormal and the rotation

of the shaft to be about the D;(0) axis, the tensors S(t) and §2 are

S(t) = D1(0) ® D1(0) + cos 02 (D2(0) ® D2(0) + D3(0) ® D3(0)) +
sin Q¢ (D5(0) ® D3(0) — D3(0) ® D2(0)),  (8.7)
2 = $(t)ST(t) = 2 (D,(0) ® D3(0) — D3(0) ® D5(0)) . (8.8)

The following identities are also noted:
ST(¢)62°S(t) = —02 (D,(0) ® D1(0) + D3(0) ® D3(0)), (8.9)

28T (¢)92S(t) = 202 = 20 (D,(0) ® D3(0) — D3(0) ® D(0)). (8.10)
Now note that ,£(¢,t) = R(£) + ,i(é,t) and 2ds(€,t) = Dp(€) + 285(¢,1), so
that (8.5) and (8.6) can be written as

o€

v (2°S(2) (Da(€) + 285(£,1)) +2925(2) 2Ws(¢, 1) + S(2)aWa(£,1))] , (8.10)

= AST(2) [2°S(t) (R(&) + 28(¢, 1)) +292S(2) 2¥(€, 1) + S(1) V(¢ 8)+

Jd,m*

9

— ok = AST(2) [y? (2°S(2) (Da(8) + 285(6,1)) +202S(2) W (&, )+
S(1) 1Ws(6,)) +y® (2°S(2) (R(E) + 28(6,1)) +205(2) 29(¢, 1)+

S(t).V(&,1))] . (8.12)

Considering (8.11) and (8.12) in conjunction with (8.9), it is clear that there are
time-independent terms on the right-hand-sides of (8.11) and (8.12) which produce
the large deformation due to the steady rotation. We shall first consider this large

deformation and then consider superposed vibrations. As we have written (8.11) and
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(8.12) in terms of modified auxiliary motion variables, it should be clear that all field
variables associated with the first modified auxiliary motion {lf', 1&0,} are functions

of ¢ only rather than being functions of both £ and t, as they are for the motion

{11‘, lda}-

8.4.1 Response to a Steady Rotation

If we incorporate the decompositions (8.1) - (8.3) into (8.11) and (8.12), we obtain

the balance laws associated with the steady rotation:

31;16(6) = AST(£) 25 (t) [R(€) + 1(€) + v (Da(¢) + 185())]

= 2ST(t) (1V +yP 1Wg) (8.13)

91m(¢)

5E - KO = ASTORS(E) [1°° (Dale) + 185(6)) + v (R(E + 13(0))]

= AST(t) (y* 1Wp + ¥ 1¥) (8.14)

The constitutive laws for this large, steady motion are given by (2.34) - (2.36), but,
as the explicit form of the free energy 1 is unspecified, there is no benefit at this stage
to directly substituting the constitutive laws into (8.13) and (8.14).

We henceforth assume that a solution ;n, ;m%, 11~(°‘, ;u and 153 to the steady
rotation problem (8.13), (8.14) and (8.4) exists, and turn to considering vibrations

superposed on this steady motion.
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8.4.2 Superposed Vibrations

In the superposed motion of the Cosserat curve, we assume that the vectors 5 n,
21m* and ,1k® are of O(&) as & — 0, where & now refers to the supremum of nE =
,E — ;E = ,E — ;E. We also assume the displacements and director displacements
511 and 918, are of O(&) as & — 0.5 To obtain the balance laws for the superposed
motion, we subtract the balance laws for the steady motion (8.13) and (8.14) from

those of the full motion (8.11) and (8.12) to obtain

‘9;2“ =AST [nzs il + 2028 i1 + St + 3P (nzs 18+ 2025285 +85 2133)]
=287 [(5¥ = 1V) +4° (aWp — 1Wg)| =h, (8.15)
Bglrh“

o€ — k> = ST [ya (925 ni + 2028 5t + Szlﬁ) +

y2P (ms 285 +202S 165+ S 21$ﬂ)]

= AST [y (a¥ — 1V) + ¥ (23Ws — 1Wg)| = P™. (8.16)

To obtain the corresponding component balance laws, we resolve the kinetic vec-
tors g1M, ;M and 211~(°‘ onto the basis {1&,- = ST ld;} and take the inner products
of (8.15) and (8.16) with ,d’:

a 21 fLJ
9¢

Anm®™ i i e . . . si g
2la€ + 21mm1)\.’.] — k™ = /\ST [y"(zv - 1V) + yaﬂ(zwﬂ - 1Wﬁ)] - d? :Pa],

+ mitt 147 = AST [(2¥ = 1¥) + 7 (35 — 1Wp)] - 1 = 1Y, (8.17)

(8.18)

where 1/\,'.]. = laj ala:/aé

SClearly, these developments parallel those for the development of an infinitesimal theory.
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As the right-hand-sides of (8.17) and (8.18) are functions of only the deformation
and the angular speed Q (which we have assumed to be constant), these equations
represent nine coupled, linear (after neglecting terms from the right-hand-side that

are of O(é2) as & — 0), homogeneous partial differential equations with variable

coefficients subject to the following boundary conditions:®

2@ (0) = 28;%(0) = 06;2(0) = n8,(0) = 282(0) = 28,%(0) = 26;,'(0) =0,
21ﬁi(L) = 21]:711(11) = 211222([1) = nm'}(L) = nm®(L) = nm'*(L) = nm* (L) = 0.
(8.20)
The constitutive laws for the superposed vibrations, which depend on the large
motion, can be obtained from those given by Green, Knops and Laws [16, Eqs.
(3.49)-(3.52)] by, among others, neglecting all temperature dependent terms in their
equations.” In addition, due to our use of the modified auxiliary motion, our results
are properly invariant under superposed rigid body motions. Upon substitution of
the constitutive laws and the known solution of the large motion, equations (8.17)
and (8.18) become functions of the three displacements 18 = 18 - 1d* and the six
director displacements 215;] = 21:50‘ . 1&’.
To solve the eigenvalue problem, we propose to use Galerkin’s method by approx-

imating the response as a series of n comparison functions® for each displacement

6As the large motion already satisfies the boundary conditions, they need only be applied to the
superposed part of the total motion.

"Green, Knops and Laws consider a homogeneous deformation of the rod as the large deformation
in their small-on-large theory. However, the extension of their discussion on constitutive equations
to the non-homogeneous large deformation considered here is trivial.

8Comparison functions must satisfy the boundary conditions (8.19) and (8.20). Clearly, because
of this requirement, the constitutive laws of the rod must be substituted into the natural boundary
conditions (8.20) before comparison functions can be found.
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variable:

ni'(£,1) Z¢' ()8ai; (6), 215;j'—‘gjfﬁé.’}c(t)a(g;,i)k(f)- (8.21)

1=1

Upon substitution of the constitutive laws and, subsequently, of these assumed solu-

tions, each component balance law takes the form

Sa S o] + S0 [Senmne] =0 o)

=1 7=1 a=1 j3=1

where C; and C;7 are linear differential operators. Upon multiplying each component
balance law by n comparison functions and integrating the resulting equations from
€ =0to¢ = L, alinear, homogeneous system of 9n second order ordinary differential

equations of the following form results:
M¢ + G¢ + K¢ = 0. (8.23)

If, for the system of partial differential equations (8.17) and (8.18), a common set of
comparison functions can be found, the matrix M will be symmetric, the matrix G
will be skew-symmetric, but the matrix K may be neither. The peculiar nature of
K is due to the structure of the linearized equations (8.17) and (8.18). This can be
observed, in part, from the extensional equations (6.35). If different sets of comparison
functions are used for the various displacement variables ,;@'(¢,t) and 215a the
aforementioned symmetries and skew-symmetries will be lost, as each equation of the
form (8.22) will only be multiplied by n comparison functions, whereas it may contain

all 9n comparison functions.®

®As each of the nine equations (8.17) and (8.18), which are of the form (8.22), must be weighted
by only n comparison functions prior to integration in Galerkin’s method, the only way to ensure
that each term is weighted by its own comparison functions is to have a common set of n compar-
ison functions that satisfy all of the boundary conditions. Finding such a set may be difficult, as
the natural boundary conditions (especially 7#3(L) = 0) may then involve the sum of comparison
functions and their derivatives.
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Due to the lack of symmetry of K, efficient solution techniques, such as the method
developed by Meirovitch [43] and used by Wickert and Mote [65] cannot be employed.
Although, in some cases, one may be able to expioit the symmetries in the problem,
one must usually expect to use a general complex eigensolution techx;ique, such as the
complex Lanczos or matrix iteration methods. The eigensolution of the approximate
system yields n approximate natural frequencies. The approximate eigenfunctions

are obtained by back substitution of the eigenvectors into (8.21).

8.5 Discussion and Conclusions

Although the approach we have taken is much easier to follow than many of the
derivations available in the literature, it is difficult to draw general conclusions re-
garding the natural frequencies of the whirling rod as compared to those of the fixed
rod. If the steady motion is a large motion, as most researchers assume, then consti-
tutive laws for large motions must be used, and these are generally unavailable. The
difficulty in drawing general conclusions is compounded by the complex materials and
geometries used in many applications. We have kept our theory general so that it can
be used for all of the important applications.!®

In closing, we note that our development has included the Coriolis accelerations in
a consistent manner. In the equations for the vibrations, these accelerations result in

a non-trivial G, and significantly alter the eigenfrequencies and eigenfunctions of the

10The only generalization we have omitted is that of allowing for a hub radius, but this can be
easily incorporated.
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rod.!* Finally, our formulation is unique in its incorporation of lateral deformations

due to the steady motion.

115ee Wickert and Mote [65] for examples.
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Chapter 9

Conclusions

We have analyzed four approximate rod theories, namely the infinitesimal theory, the
theory of small strain accompanied by moderate rotation, the theory of moderate
strain accompanied by small rotation and the theory of moderate strain and rota-
tion. Two different approaches were given. Also, several important applications of
a Cosserat curve model were analysed. We have placed particular emphasis on the
theory in which small strain is accompanied by moderate rotation. In this theory, we
constrained the lateral extensions to illuminate certain features of the balance laws.
In general, the linear balance and constitutive laws do not apply when the strain or
rotation is moderate. To obviate this issue, our theory and illustrations are based on
a specific quadratic form of the free energy.

In the development of the constrained theory of small strain accompanied by mod-
erate rotation, we improved the invariant theory of O'Reilly [50]. We shoﬁed that the
assigned forces and assigned director forces in a superposed motion need not be ob-
jective unless the Lagrange multipliers are objective. We argued on physical grounds
that such objectivity would be too restrictive, and referred to counter-examples given
in O’Reilly and Turcotte [52].

The first two applications we analyzed pertained to the flexural and extensional
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vibrations using the infinitesimal theory. As the linear equations for flexural vibration
of a Cosserat curve are equivalent to those of the Timoshenko beam theory, there are
substantial results available in the literature, but we proved the existence of previously
undiscovered modes. In solving for the eigenfrequencies and eigenfunctions of the
extensional vibration, we have found the first such results, for a non-circular rod,
that include lateral extensions.

We gave three examples in the moderate rotation theory. In the first of these, a
static response to a distributed load, we emphasized the fact that the rod geometry
and loading must be chosen carefully in order for the theory to be valid. The secondv
example, that of flexural vibration in the first mode, emphasized the approach that
must be taken to determine the extensional response as the flexural deformations
serve as excitations along the rod and at the boundaries. These first two examples
also show clearly the nature of the coupling introduced by the moderate rotation
theory as compared to the infinitesimal theory, which is primarily that an extensional
response is induced by any flexural motions. In the last example with moderate
rotation, we showed that the theory is not valid for vibration in the fifth flexural
mode even though it was valid for vibration in the first flexural mode for the same
rod. This highlighted the fact that the theory is obviously not valid for arbitrary
deformations of the rod.

Our last example was the whirling rod. We developed the balance laws for a rod
rotating about an end at a constant angular velocity. Our intention was to provide

a firm foundation for the problem, which has a long but inconsistent history. We
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established balance laws for a large, steady modified auxiliary motion and for any
superposed vibrations. We did not solve for the large motion or for the vibration

modes because we left the explicit form of the free energy to be arbitrary. However,

we discussed an approximate solution procedure that can be used for this purpose.
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